Authors:
Anirudh Vadakedath
Rohith Ramakrishnan
The data consists of flight arrival and departure details for all commercial flights within the USA, from October 1987 to April 2008. This is a large dataset: there are nearly 120 million records in total, and takes up 4 gigabytes of space compressed and 12 gigabytes when uncompressed.
Link :
http://stat-computing.org/dataexpo/2009/
https://www.kaggle.com/bulter22/airline-data
Sr.No | Name | Description |
---|---|---|
1 | Year | 1987-2008 |
2 | Month | 1-12 |
3 | DayofMonth | 1-31 |
4 | DayOfWeek | 1 (Monday) - 7 (Sunday) |
5 | DepTime | actual departure time (local, hhmm) |
6 | CRSDepTime | scheduled departure time (local, hhmm) |
7 | ArrTime | actual arrival time (local, hhmm) |
8 | CRSArrTime | scheduled arrival time (local, hhmm) |
9 | UniqueCarrier | unique carrier code |
10 | FlightNum | flight number |
11 | TailNum | plane tail number |
12 | ActualElapsedTime | in minutes |
13 | CRSElapsedTime | in minutes |
14 | AirTime | in minutes |
15 | ArrDelay | arrival delay, in minutes |
16 | DepDelay | departure delay, in minutes |
17 | Origin | origin IATA airport code |
18 | Dest | destination IATA airport code |
19 | Distance | in miles |
20 | TaxiIn | taxi in time, in minutes |
21 | TaxiOut | taxi out time in minutes |
22 | Cancelled | was the flight cancelled? |
23 | CancellationCode | reason for cancellation (A = carrier, B = weather, C = NAS, D = security) |
24 | Diverted | 1 = yes, 0 = no |
25 | CarrierDelay | in minutes |
26 | WeatherDelay | in minutes |
27 | NASDelay | in minutes |
28 | SecurityDelay | in minutes |
29 | LateAircraftDelay | in minutes |
The aim of the data expo is to provide a graphical summary of important features of the data set. This is intentionally vague in order to allow different entries to focus on different aspects of the data, but here are a few ideas to get you started:
When is the best time of day/day of week/time of year to fly to minimise delays?
Do older planes suffer more delays?
How well does weather predict plane delays?
To run the Entire Analysis:
On Terminal / CMD :
spark-shell
:load report.scala
The output of the exisiting report in saved in out.scala