Skip to content
This repository has been archived by the owner on Oct 31, 2024. It is now read-only.

Add Muller's method #139

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/SimpleNonlinearSolve.jl
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ include("nlsolve/klement.jl")
include("nlsolve/trustRegion.jl")
include("nlsolve/halley.jl")
include("nlsolve/dfsane.jl")
include("nlsolve/muller.jl")

## Interval Nonlinear Solvers
include("bracketing/bisection.jl")
Expand Down Expand Up @@ -115,7 +116,7 @@ end
end

export SimpleBroyden, SimpleDFSane, SimpleGaussNewton, SimpleHalley, SimpleKlement,
SimpleLimitedMemoryBroyden, SimpleNewtonRaphson, SimpleTrustRegion
SimpleLimitedMemoryBroyden, SimpleNewtonRaphson, SimpleTrustRegion, SimpleMuller
export Alefeld, Bisection, Brent, Falsi, ITP, Ridder

end # module
55 changes: 55 additions & 0 deletions src/nlsolve/muller.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
"""
SimpleMuller()

Muller's method for determining a root of a univariate, scalar function. The
algorithm, described in Sec. 9.5.2 of
[Press et al. (2007)](https://numerical.recipes/book.html), requires three
initial guesses `(xᵢ₋₂, xᵢ₋₁, xᵢ)` for the root.
"""
struct SimpleMuller <: AbstractSimpleNonlinearSolveAlgorithm end

function SciMLBase.solve(prob::NonlinearProblem, alg::SimpleMuller, args...;
abstol = nothing, maxiters = 1000, kwargs...)
@assert !isinplace(prob) "`SimpleMuller` only supports OOP problems."
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's add some checks here for x is a 3 tuple and the elements are scalars

@assert length(prob.u0) == 3 "`SimpleMuller` requires three initial guesses."
xᵢ₋₂, xᵢ₋₁, xᵢ = prob.u0
xᵢ₋₂, xᵢ₋₁, xᵢ = promote(xᵢ₋₂, xᵢ₋₁, xᵢ)
@assert xᵢ₋₂ ≠ xᵢ₋₁ ≠ xᵢ ≠ xᵢ₋₂
avik-pal marked this conversation as resolved.
Show resolved Hide resolved
f = Base.Fix2(prob.f, prob.p)
fxᵢ₋₂, fxᵢ₋₁, fxᵢ = f(xᵢ₋₂), f(xᵢ₋₁), f(xᵢ)

abstol = __get_tolerance(nothing, abstol,
promote_type(eltype(fxᵢ₋₂), eltype(xᵢ₋₂)))

xᵢ₊₁, fxᵢ₊₁ = xᵢ₋₂, fxᵢ₋₂

for _ ∈ 1:maxiters
q = (xᵢ - xᵢ₋₁)/(xᵢ₋₁ - xᵢ₋₂)
A = q*fxᵢ - q*(1 + q)*fxᵢ₋₁ + q^2*fxᵢ₋₂
B = (2*q + 1)*fxᵢ - (1 + q)^2*fxᵢ₋₁ + q^2*fxᵢ₋₂
C = (1 + q)*fxᵢ

denom₊ = B + √(B^2 - 4*A*C)
denom₋ = B - √(B^2 - 4*A*C)

if abs(denom₊) ≥ abs(denom₋)
xᵢ₊₁ = xᵢ - (xᵢ - xᵢ₋₁)*2*C/denom₊
else
xᵢ₊₁ = xᵢ - (xᵢ - xᵢ₋₁)*2*C/denom₋
end

fxᵢ₊₁ = f(xᵢ₊₁)

# Termination Check
if abstol ≥ abs(fxᵢ₊₁)
return build_solution(prob, alg, xᵢ₊₁, fxᵢ₊₁;
retcode = ReturnCode.Success)
fgittins marked this conversation as resolved.
Show resolved Hide resolved
end

xᵢ₋₂, xᵢ₋₁, xᵢ = xᵢ₋₁, xᵢ, xᵢ₊₁
fxᵢ₋₂, fxᵢ₋₁, fxᵢ = fxᵢ₋₁, fxᵢ, fxᵢ₊₁
end

return build_solution(prob, alg, xᵢ₊₁, fxᵢ₊₁;
retcode = ReturnCode.MaxIters)
end
56 changes: 56 additions & 0 deletions test/core/muller_tests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
@testitem "SimpleMuller" begin
@testset "Quadratic function" begin
f(u, p) = u^2 - p

u0 = (10.0, 20.0, 30.0)
p = 612.0
prob = NonlinearProblem{false}(f, u0, p)
sol = solve(prob, SimpleMuller())

@test sol.u ≈ √612

u0 = (-10.0, -20.0, -30.0)
prob = NonlinearProblem{false}(f, u0, p)
sol = solve(prob, SimpleMuller())

@test sol.u ≈ -√612
end

@testset "Sine function" begin
f(u, p) = sin(u)

u0 = (1.0, 2.0, 3.0)
prob = NonlinearProblem{false}(f, u0)
sol = solve(prob, SimpleMuller())

@test sol.u ≈ π

u0 = (2.0, 4.0, 6.0)
prob = NonlinearProblem{false}(f, u0)
sol = solve(prob, SimpleMuller())

@test sol.u ≈ 2*π
end

@testset "Exponential-sine function" begin
f(u, p) = exp(-u)*sin(u)

u0 = (-2.0, -3.0, -4.0)
prob = NonlinearProblem{false}(f, u0)
sol = solve(prob, SimpleMuller())

@test sol.u ≈ -π

u0 = (-1.0, 0.0, 1/2)
prob = NonlinearProblem{false}(f, u0)
sol = solve(prob, SimpleMuller())

@test sol.u ≈ 0

u0 = (-1.0, 0.0, 1.0)
prob = NonlinearProblem{false}(f, u0)
sol = solve(prob, SimpleMuller())

@test sol.u ≈ π
end
end
Loading