Skip to content

Commit

Permalink
server : match OAI structured output response (ggerganov#9527)
Browse files Browse the repository at this point in the history
  • Loading branch information
VJHack authored Sep 18, 2024
1 parent f799155 commit 8a30835
Show file tree
Hide file tree
Showing 3 changed files with 5 additions and 2 deletions.
2 changes: 1 addition & 1 deletion examples/server/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -501,7 +501,7 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte

See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.

The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}`), similar to other OpenAI-inspired API providers.
The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}` or `{"type": "json_schema", "schema": {"properties": { "name": { "title": "Name", "type": "string" }, "date": { "title": "Date", "type": "string" }, "participants": { "items": {"type: "string" }, "title": "Participants", "type": "string" } } } }`), similar to other OpenAI-inspired API providers.

*Examples:*

Expand Down
3 changes: 3 additions & 0 deletions examples/server/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -331,6 +331,9 @@ static json oaicompat_completion_params_parse(
std::string response_type = json_value(response_format, "type", std::string());
if (response_type == "json_object") {
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
} else if (response_type == "json_schema") {
json json_schema = json_value(response_format, "json_schema", json::object());
llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
} else if (!response_type.empty() && response_type != "text") {
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
}
Expand Down
2 changes: 1 addition & 1 deletion grammars/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ You can use GBNF grammars:

- In [llama-server](../examples/server):
- For any completion endpoints, passed as the `json_schema` body field
- For the `/chat/completions` endpoint, passed inside the `response_format` body field (e.g. `{"type", "json_object", "schema": {"items": {}}}`)
- For the `/chat/completions` endpoint, passed inside the `response_format` body field (e.g. `{"type", "json_object", "schema": {"items": {}}}` or `{ type: "json_schema", json_schema: {"schema": ...} }`)
- In [llama-cli](../examples/main), passed as the `--json` / `-j` flag
- To convert to a grammar ahead of time:
- in CLI, with [examples/json_schema_to_grammar.py](../examples/json_schema_to_grammar.py)
Expand Down

0 comments on commit 8a30835

Please sign in to comment.