Skip to content

Commit

Permalink
Merge remote-tracking branch 'upstream/main'
Browse files Browse the repository at this point in the history
  • Loading branch information
Skylark0924 committed Mar 9, 2024
2 parents 7c45499 + 1ca1f6f commit 3ce4323
Show file tree
Hide file tree
Showing 5 changed files with 1,749 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
"""
HumanoidPhysHOI (RofuncRL)
===========================
Humanoid backflip/walk/run/dance/hop, trained by RofuncRL
"""

import isaacgym
import argparse

from rofunc.config.utils import omegaconf_to_dict, get_config
from rofunc.learning.RofuncRL.tasks import Tasks
from rofunc.learning.RofuncRL.trainers import Trainers
from rofunc.learning.pre_trained_models.download import model_zoo
from rofunc.learning.utils.utils import set_seed


def train(custom_args):
# Config task and trainer parameters for Isaac Gym environments
task, motion_file = custom_args.task.split('_')
args_overrides = ["task={}".format(task),
"train={}{}RofuncRL".format(task, custom_args.agent.upper()),
"device_id={}".format(custom_args.sim_device),
"rl_device=cuda:{}".format(custom_args.rl_device),
"headless={}".format(custom_args.headless),
"num_envs={}".format(custom_args.num_envs)]
cfg = get_config('./learning/rl', 'config', args=args_overrides)
cfg.task.env.motion_file = f'amp_humanoid_{motion_file}.npy'
cfg_dict = omegaconf_to_dict(cfg.task)

set_seed(cfg.train.Trainer.seed)

# Instantiate the Isaac Gym environment
env = Tasks().task_map[task](cfg=cfg_dict,
rl_device=cfg.rl_device,
sim_device=f'cuda:{cfg.device_id}',
graphics_device_id=cfg.device_id,
headless=cfg.headless,
virtual_screen_capture=cfg.capture_video, # TODO: check
force_render=cfg.force_render)

# Instantiate the RL trainer
trainer = Trainers().trainer_map[custom_args.agent](cfg=cfg,
env=env,
device=cfg.rl_device,
env_name=custom_args.task)
# Start training
trainer.train()


def inference(custom_args):
# Config task and trainer parameters for Isaac Gym environments
task, motion_file = custom_args.task.split('_')
args_overrides = ["task={}".format(task),
"train={}{}RofuncRL".format(task, custom_args.agent.upper()),
"device_id={}".format(custom_args.sim_device),
"rl_device=cuda:{}".format(custom_args.rl_device),
"headless={}".format(False),
"num_envs={}".format(16)]
cfg = get_config('./learning/rl', 'config', args=args_overrides)
cfg_dict = omegaconf_to_dict(cfg.task)

set_seed(cfg.train.Trainer.seed)

# Instantiate the Isaac Gym environment
infer_env = Tasks().task_map[task](cfg=cfg_dict,
rl_device=cfg.rl_device,
sim_device=f'cuda:{cfg.device_id}',
graphics_device_id=cfg.device_id,
headless=cfg.headless,
virtual_screen_capture=cfg.capture_video, # TODO: check
force_render=cfg.force_render)

# Instantiate the RL trainer
trainer = Trainers().trainer_map[custom_args.agent](cfg=cfg,
env=infer_env,
device=cfg.rl_device,
env_name=custom_args.task,
inference=True)

# load checkpoint
if custom_args.ckpt_path is None:
custom_args.ckpt_path = model_zoo(name=f"{custom_args.task}.pth")
trainer.agent.load_ckpt(custom_args.ckpt_path)

# Start inference
trainer.inference()


if __name__ == '__main__':
gpu_id = 0

parser = argparse.ArgumentParser()
# Available tasks: HumanoidAMP_backflip, HumanoidAMP_walk, HumanoidAMP_run, HumanoidAMP_dance, HumanoidAMP_hop
parser.add_argument("--task", type=str, default="HumanoidAMP_hop")
parser.add_argument("--agent", type=str, default="amp") # Available agent: amp
parser.add_argument("--num_envs", type=int, default=4096)
parser.add_argument("--sim_device", type=int, default=0)
parser.add_argument("--rl_device", type=int, default=gpu_id)
parser.add_argument("--headless", type=str, default="True")
parser.add_argument("--inference", action="store_true", help="turn to inference mode while adding this argument")
parser.add_argument("--ckpt_path", type=str, default=None)
custom_args = parser.parse_args()

if not custom_args.inference:
train(custom_args)
else:
inference(custom_args)
68 changes: 68 additions & 0 deletions rofunc/config/learning/rl/task/HumanoidPhysHOI.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# if given, will override the device setting in gym.
env:
numEnvs: 2048
envSpacing: 5
episodeLength: 40
isFlagrun: False
enableDebugVis: False
playdataset: False
projtype: "None"
saveImages: False
initVel: False

pdControl: True
powerScale: 1.0
controlFrequencyInv: 2 # 30 Hz
stateInit: "Start" #Random
hybridInitProb: 0.5
dataFPS: 25
dataFramesScale: 1.2 # 25->30fps
ballSize: 1.

localRootObs: False
keyBodies: ["Head", "L_Knee", "R_Knee", "L_Elbow", "R_Elbow", "L_Ankle", "R_Ankle", "L_Index3", "L_Middle3", "L_Pinky3", "L_Ring3","L_Thumb3","R_Index3", "R_Middle3", "R_Pinky3", "R_Ring3","R_Thumb3"] # #["L_Hip", "L_Knee", "left_foot", "L_Toe", "R_Hip", "R_Knee", "right_foot", "R_Toe", "Torso", "Spine", "Chest", "Neck", "Head", "L_Thorax", "L_Shoulder", "L_Elbow", "left_hand", "R_Thorax", "R_Shoulder", "R_Elbow", "right_hand"] #["right_hand", "left_hand", "right_foot", "left_foot"]
contactBodies: ["L_Index3", "L_Middle3", "L_Pinky3", "L_Ring3","L_Thumb3","R_Index3", "R_Middle3", "R_Pinky3", "R_Ring3","R_Thumb3"] #["right_foot", "left_foot"]
terminationHeight: 0.15
enableEarlyTermination: True

asset:
assetRoot: "physhoi/data/assets"
assetFileName: "smplx/smplx_capsule.xml"

plane:
staticFriction: 1.0
dynamicFriction: 1.0
restitution: 1.6

rewardWeights:
p: 50.
r: 50.
pv: 0.
rv: 0.

op: 1.
or: 0.
opv: 0.
orv: 0.

ig: 20.

cg1: 5.
cg2: 5.

sim:
substeps: 2
physx:
num_threads: 4
solver_type: 1 # 0: pgs, 1: tgs
num_position_iterations: 4
num_velocity_iterations: 0
contact_offset: 0.02
rest_offset: 0.0
bounce_threshold_velocity: 0.2
max_depenetration_velocity: 10.0
default_buffer_size_multiplier: 10.0

flex:
num_inner_iterations: 10
warm_start: 0.25
68 changes: 68 additions & 0 deletions rofunc/config/learning/rl/task/HumanoidPhyshoi60hz.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# if given, will override the device setting in gym.
env:
numEnvs: 2048
envSpacing: 5
episodeLength: 40
isFlagrun: False
enableDebugVis: False
playdataset: False
projtype: "None"
saveImages: False
initVel: False

pdControl: True
powerScale: 1.0
controlFrequencyInv: 1 # 60 Hz
stateInit: "Start" #Random
hybridInitProb: 0.5
dataFPS: 25
dataFramesScale: 2.4 # 25->60fps
ballSize: 1.

localRootObs: False
keyBodies: ["Head", "L_Knee", "R_Knee", "L_Elbow", "R_Elbow", "L_Ankle", "R_Ankle", "L_Index3", "L_Middle3", "L_Pinky3", "L_Ring3","L_Thumb3","R_Index3", "R_Middle3", "R_Pinky3", "R_Ring3","R_Thumb3"] # #["L_Hip", "L_Knee", "left_foot", "L_Toe", "R_Hip", "R_Knee", "right_foot", "R_Toe", "Torso", "Spine", "Chest", "Neck", "Head", "L_Thorax", "L_Shoulder", "L_Elbow", "left_hand", "R_Thorax", "R_Shoulder", "R_Elbow", "right_hand"] #["right_hand", "left_hand", "right_foot", "left_foot"]
contactBodies: ["L_Index3", "L_Middle3", "L_Pinky3", "L_Ring3","L_Thumb3","R_Index3", "R_Middle3", "R_Pinky3", "R_Ring3","R_Thumb3"] #["right_foot", "left_foot"]
terminationHeight: 0.15
enableEarlyTermination: True

asset:
assetRoot: "physhoi/data/assets"
assetFileName: "smplx/smplx_capsule.xml"

plane:
staticFriction: 1.0
dynamicFriction: 1.0
restitution: 1.6

rewardWeights:
p: 50.
r: 50.
pv: 0.
rv: 0.

op: 1.
or: 0.
opv: 0.
orv: 0.

ig: 20.

cg1: 5.
cg2: 1.

sim:
substeps: 2
physx:
num_threads: 4
solver_type: 1 # 0: pgs, 1: tgs
num_position_iterations: 4
num_velocity_iterations: 0
contact_offset: 0.02
rest_offset: 0.0
bounce_threshold_velocity: 0.2
max_depenetration_velocity: 10.0
default_buffer_size_multiplier: 10.0

flex:
num_inner_iterations: 10
warm_start: 0.25
32 changes: 32 additions & 0 deletions rofunc/learning/RofuncRL/agents/mixline/physhoi_agent.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# Copyright 2023, Junjia LIU, [email protected]
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gym
import gymnasium
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import DictConfig
from typing import Callable, Union, Tuple, Optional

import rofunc as rf
from rofunc.learning.RofuncRL.agents.base_agent import BaseAgent
from rofunc.learning.RofuncRL.agents.mixline.amp_agent import AMPAgent
from rofunc.learning.RofuncRL.models.base_models import BaseMLP
from rofunc.learning.RofuncRL.utils.memory import Memory


class PhysHOIAgent(AMPAgent):
def __init__(self):
super().__init__()
Loading

0 comments on commit 3ce4323

Please sign in to comment.