Skip to content

Commit

Permalink
[kernel] Support new KCache Layout - Context Attention Triton Kernel (h…
Browse files Browse the repository at this point in the history
…pcaitech#5658)

* add context attn triton kernel - new kcache layout

* add benchmark triton

* tiny revise

* trivial - code style, comment
  • Loading branch information
yuanheng-zhao authored Apr 26, 2024
1 parent 3c91e3f commit 5be590b
Show file tree
Hide file tree
Showing 3 changed files with 291 additions and 13 deletions.
243 changes: 240 additions & 3 deletions colossalai/kernel/triton/context_attn_unpad.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,6 +185,184 @@ def _fwd_context_paged_attention_kernel(
return


# Triton 2.1.0
# TODO(yuanheng-zhao): This is a temporary dispatch to use the new layout for kcache
# merge `_fwd_context_paged_attention_kernel_v2` with `_fwd_context_paged_attention_kernel` later
# as the kcache layout has been supported in the whole triton flow.
@triton.jit
def _fwd_context_paged_attention_kernel_v2(
Q,
K,
V,
O,
KCache, # [num_blocks, num_kv_heads, head_dim // x, block_size, x]
VCache, # [num_blocks, num_kv_heads, block_size, head_dim]
BLOCK_TABLES, # [num_seqs, max_blocks_per_sequence]
batch_size,
stride_qt,
stride_qh,
stride_qd,
stride_kt,
stride_kh,
stride_kd,
stride_vt,
stride_vh,
stride_vd,
stride_ot,
stride_oh,
stride_od,
stride_cacheb, # v cache stride(0) - num_blocks
stride_cacheh, # v cache stride(1) - num_kv_heads
stride_cachebs, # v cache stride(2) - block_size
stride_cached, # v cache stride(3) - head_dim
stride_bts,
stride_btb,
context_lengths,
sm_scale,
KV_GROUPS: tl.constexpr,
BLOCK_SIZE: tl.constexpr,
HEAD_DIM: tl.constexpr,
KCACHE_X: tl.constexpr, # k stride on the second last dimension
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
):
cur_seq_idx = tl.program_id(0)
if cur_seq_idx >= batch_size:
return
cur_head_idx = tl.program_id(1)
block_start_m = tl.program_id(2) # Br, max_input_len // Block_M
cur_kv_head_idx = cur_head_idx // KV_GROUPS

# NOTE It requires BLOCK_M, BLOCK_N, and BLOCK_SIZE to be the same
tl.static_assert(BLOCK_M == BLOCK_N)
tl.static_assert(BLOCK_N == BLOCK_SIZE)

# get the current sequence length from provided context lengths tensor
cur_seq_len = tl.load(context_lengths + cur_seq_idx)
# NOTE when talking to fused QKV and a nopadding context attention,
# we assume that the input Q/K/V is contiguous, and thus here `prev_seq_len_sum`
# could be considered as the start index of the current sequence.
# FIXME might want to explore better way to get the summation of prev seq lengths.
# `tl.sum(tensor[:end])` is invalid as tensor slice is not supported in triton.
prev_seq_len_sum = 0
for i in range(0, cur_seq_idx):
prev_seq_len_sum += tl.load(context_lengths + i)

offset_q = prev_seq_len_sum * stride_qt + cur_head_idx * stride_qh
offset_kv = prev_seq_len_sum * stride_kt + cur_kv_head_idx * stride_kh
Q_block_ptr = tl.make_block_ptr(
base=Q + offset_q,
shape=(cur_seq_len, HEAD_DIM),
strides=(stride_qt, stride_qd),
offsets=(block_start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)
K_block_ptr = tl.make_block_ptr(
base=K + offset_kv,
shape=(HEAD_DIM, cur_seq_len),
strides=(stride_kd, stride_kt),
offsets=(0, 0),
block_shape=(HEAD_DIM, BLOCK_N),
order=(0, 1),
)
V_block_ptr = tl.make_block_ptr(
base=V + offset_kv,
shape=(cur_seq_len, HEAD_DIM),
strides=(stride_vt, stride_vd),
offsets=(0, 0),
block_shape=(BLOCK_N, HEAD_DIM),
order=(1, 0),
)
O_block_ptr = tl.make_block_ptr(
base=O + offset_q,
shape=(cur_seq_len, HEAD_DIM),
strides=(stride_ot, stride_od),
offsets=(block_start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, HEAD_DIM),
order=(1, 0),
)

# block table for the current sequence
block_table_ptr = BLOCK_TABLES + cur_seq_idx * stride_bts
# block indexes on block table (i.e. 0, 1, 2, ..., max_blocks_per_seq)
# Consider `block_start_m` as the logical block idx in the current block table,
# as we have BLOCK_M the same size as the block size.
cur_block_table_idx = block_start_m
cur_block_id = tl.load(block_table_ptr + cur_block_table_idx * stride_btb)
offset_kvcache = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh

offsets_m = block_start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offsets_n = tl.arange(0, BLOCK_N)
m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)

if block_start_m * BLOCK_M >= cur_seq_len:
return

Q_i = tl.load(Q_block_ptr, boundary_check=(1, 0))

for block_start_n in range(0, (block_start_m + 1) * BLOCK_M, BLOCK_N):
block_start_n = tl.multiple_of(block_start_n, BLOCK_N)

k = tl.load(K_block_ptr, boundary_check=(0, 1))
S_ij = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
S_ij += tl.dot(Q_i, k)
S_ij *= sm_scale
S_ij += tl.where(offsets_m[:, None] >= (block_start_n + offsets_n[None, :]), 0, float("-inf"))

m_ij = tl.max(S_ij, 1) # rowmax(Sij)
m_ij = tl.maximum(m_i, m_ij) # m_ij
S_ij -= m_ij[:, None]
p_ij_hat = tl.exp(S_ij)
scale = tl.exp(m_i - m_ij)
l_ij = scale * l_i + tl.sum(p_ij_hat, 1)
acc = acc * scale[:, None]

v = tl.load(V_block_ptr, boundary_check=(1, 0))
p_ij_hat = p_ij_hat.to(v.type.element_ty)

acc += tl.dot(p_ij_hat, v)
l_i = l_ij
m_i = m_ij
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))

acc = acc / l_i[:, None]
tl.store(O_block_ptr, acc.to(O.type.element_ty), boundary_check=(1, 0))

if cur_head_idx % KV_GROUPS == 0:
# Copy k to corresponding cache block
block_range = tl.arange(0, BLOCK_SIZE)
X_range = tl.arange(0, KCACHE_X)
# unroll the loop aggressively
for split_x in tl.static_range(HEAD_DIM // KCACHE_X):
offsets_dmodel_x_partion = tl.arange(split_x * KCACHE_X, (split_x + 1) * KCACHE_X)
offsets_k = K + offset_kv + offsets_dmodel_x_partion[None, :] * stride_kd + offsets_m[:, None] * stride_kt
k = tl.load(offsets_k, mask=offsets_m[:, None] < cur_seq_len, other=0.0)
# HACK: KCache must be contiguous in order to apply the following offsets calculation
offsets_kcache = (
KCache
+ offset_kvcache
+ split_x * BLOCK_SIZE * KCACHE_X
+ block_range[:, None] * KCACHE_X
+ X_range[None, :]
)
tl.store(offsets_kcache, k, mask=block_range[:, None] < cur_seq_len - block_start_m * BLOCK_SIZE)
# Copy v to corresponding cache block
offsets_vd = tl.arange(0, HEAD_DIM) # offsets_dmodel
offsets_vt = block_start_m * BLOCK_N + offsets_n
offsets_v = V + offset_kv + offsets_vt[None, :] * stride_vt + offsets_vd[:, None] * stride_vd
v = tl.load(offsets_v, mask=offsets_vt[None, :] < cur_seq_len, other=0.0)
offsets_vcache = (
VCache + offset_kvcache + block_range[None, :] * stride_cachebs + offsets_vd[:, None] * stride_cached
)
tl.store(offsets_vcache, v, mask=block_range[None, :] < cur_seq_len - block_start_m * BLOCK_SIZE)

return


# Triton 2.1.0
@triton.jit
def _alibi_fwd_context_paged_attention_kernel(
Expand Down Expand Up @@ -375,21 +553,33 @@ def context_attention_unpadded(
q: torch.Tensor, # [num_tokens, num_heads, head_dim]
k: torch.Tensor, # [num_tokens, num_kv_heads, head_dim]
v: torch.Tensor, # [num_tokens, num_kv_heads, head_dim]
k_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_dim, block_size]
v_cache: torch.Tensor, # [num_blocks, num_kv_heads, head_dim, block_size]
k_cache: torch.Tensor, # [num_blocks, num_kv_heads, block_size, head_dim]
v_cache: torch.Tensor, # [num_blocks, num_kv_heads, block_size, head_dim]
context_lengths: torch.Tensor, # [num_seqs]
block_tables: torch.Tensor, # [num_seqs, max_blocks_per_sequence],
block_size: int,
output: torch.Tensor = None, # [num_tokens, num_heads, head_dim]
alibi_slopes: torch.Tensor = None, # [num_heads]
max_seq_len: int = None,
sm_scale: int = None,
# NOTE(yuanheng-zhao): the following flag is used to determine whether to use the new layout for kcache
# [num_blocks, num_kv_heads, head_dim // x, block_size, x] - must be contiguous
use_new_kcache_layout: bool = False,
):
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk == Lv
assert Lk in {32, 64, 128, 256}
assert q.shape[0] == k.shape[0] == v.shape[0]
assert k_cache.shape == v_cache.shape
k_cache_shape = k_cache.shape
v_cache_shape = v_cache.shape
if use_new_kcache_layout:
assert (
len(k_cache_shape) == 5
and k_cache_shape[1] == v_cache_shape[1]
and k_cache_shape[2] * k_cache_shape[4] == v_cache_shape[3]
), f"Invalid KCache shape {k_cache_shape} and VCache shape {v_cache_shape}"
else:
assert k_cache_shape == v_cache_shape, f"Invalid KCache shape {k_cache_shape} and VCache shape {v_cache_shape}"
assert context_lengths.shape[0] == block_tables.shape[0]

num_tokens, num_heads, head_dim = q.shape
Expand All @@ -413,6 +603,53 @@ def context_attention_unpadded(
# To optimize, revise batching/scheduling to batch 2^n sequences in a batch (preferred)
grid = (triton.next_power_of_2(num_seqs), num_heads, triton.cdiv(max_seq_len, BLOCK_M))

if use_new_kcache_layout:
# TODO(yuanheng-zhao): Since the alibi kernel is pretty similar to the original one,
# the code (alibi kernel) will be refactored later to avoid code duplication, when
# the whole triton flow with new k cache layout has been supported and tested.
assert (
alibi_slopes is None
), "Alibi Slopes will be supported with new kcache layout later when the whole triton flow is ready"
x = k_cache_shape[4] # Intuition: 16 // dtype_size

_fwd_context_paged_attention_kernel_v2[grid](
q,
k,
v,
output,
k_cache,
v_cache,
block_tables,
num_seqs,
q.stride(0),
q.stride(1),
q.stride(2),
k.stride(0),
k.stride(1),
k.stride(2),
v.stride(0),
v.stride(1),
v.stride(2),
output.stride(0),
head_dim,
1,
v_cache.stride(0),
v_cache.stride(1),
v_cache.stride(2),
v_cache.stride(3),
block_tables.stride(0),
block_tables.stride(1),
context_lengths,
sm_scale,
KV_GROUPS=num_kv_group,
BLOCK_SIZE=block_size,
HEAD_DIM=Lk,
KCACHE_X=x,
BLOCK_M=BLOCK_M,
BLOCK_N=BLOCK_N,
)
return output

if alibi_slopes is not None:
_alibi_fwd_context_paged_attention_kernel[grid](
q,
Expand Down
28 changes: 24 additions & 4 deletions examples/inference/benchmark_ops/benchmark_context_attn_unpad.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,9 +24,9 @@
x_vals=[2**i for i in range(8, 13)],
# x_vals=[x for x in range(256, 8192, 256)],
line_arg="provider",
line_vals=["torch", "triton"],
line_names=["Torch", "Triton"],
styles=[("red", "-"), ("blue", "-")],
line_vals=["torch", "triton", "triton_new_klayout"],
line_names=["Torch", "Triton", "Triton_new_klayout"],
styles=[("red", "-"), ("blue", "-"), ("green", "-")],
ylabel="ms",
plot_name=f"context_attn-block_size-{BLOCK_SIZE}-batch{BATCH}",
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
Expand Down Expand Up @@ -98,13 +98,33 @@ def bench_kernel(
HEAD_DIM,
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
elif provider == "triton":
k_cache_triton = torch.zeros_like(k_cache_ref)
v_cache_triton = torch.zeros_like(v_cache_ref)
fn = lambda: context_attention_unpadded(
q_unpad, k_unpad, v_unpad, k_cache_triton, v_cache_triton, context_lengths, block_tables, block_size
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
elif provider == "triton_new_klayout":
# NOTE New kcache layout (num_blocks, num_kv_heads, head_dim // x, block_size, x)
# to be applied around the cuda and triton kernels.
# Here we want to make sure it does not cause downgrade in performance.
x = 16 // torch.tensor([], dtype=dtype).element_size()
k_cache_shape = (bsz * max_num_blocks_per_seq, num_kv_heads, HEAD_DIM // x, block_size, x)
k_cache_triton = torch.zeros(size=k_cache_shape, dtype=dtype, device=device)
v_cache_triton = torch.zeros_like(v_cache_ref)
fn = lambda: context_attention_unpadded(
q_unpad,
k_unpad,
v_unpad,
k_cache_triton,
v_cache_triton,
context_lengths,
block_tables,
block_size,
use_new_kcache_layout=True,
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)

return ms, min_ms, max_ms

Expand Down
Loading

0 comments on commit 5be590b

Please sign in to comment.