Speeder uses RayData to do distributed data preprocessing on the CPU at training time with data prefetching
Speeder uses RayTrain to do distributed data parallelism to train models on multiple GPUs at once
Speeder uses RayTune to do intelligent hyperparameter sweeps in parallel
conda env create -y -n speeder -f env.yaml
conda activate speeder
pip install ffcv --no-cache-dir
python speeder/train.py
You can modify parameters directly in configs/train_cfg.yaml
For launching runs, you can specify a parameter override path to override select defaults like so:
python speeder/train.py overrides=<path_to_your_overrides_yaml>
See the overrides
directory for examples
-
Make a
.env
from.env.template
and add your WandB API key -
Group by
group
andjob_type
in the WandB dashboard to properly organize- The organization hierarchy is
experiment
->run
->trial
- The organization hierarchy is