Skip to content

Commit

Permalink
issue #54
Browse files Browse the repository at this point in the history
improved indices
  • Loading branch information
tania-morozova committed Dec 28, 2017
1 parent 1b568d7 commit c3a5879
Showing 1 changed file with 21 additions and 25 deletions.
46 changes: 21 additions & 25 deletions doc/chap_examples.rst
Original file line number Diff line number Diff line change
Expand Up @@ -520,14 +520,23 @@ are shown in green. Observe that in the congested mode, the density
the guard is not actually reached, because the state evolves according
to the green region.


.. raw:: html

<h2>References</h2>

.. [SUN2003] L.Muñoz, X.Sun, R.Horowitz, and L.Alvarez. 2003. Traffic Density
Estimation with the Cell Transmission Model. In *Proceedings of the
American Control Conference*, 3750–3755. Denver, Colorado, USA.
Inverted Pendulum On a Cart
---------------------------

.. _invpendfig:

.. figure:: /pic/chapter06_section05_inpendulum.png
:alt: invpend
:width: 50 %
:width: 30 %

Inverted pendulum

Expand All @@ -541,7 +550,7 @@ Therefore we define

- :math:`L` - length of the rod;

- :math:`k_1, k_2` - the coefficient of dynamic viscosity for the bodies 1 and 2 respectively;
- :math:`k_1, k_2` - the coefficient of viscous friction for the bodies 1 and 2 respectively;

- :math:`J_c` - inertia moment of the second body relative to its center of mass;

Expand All @@ -553,12 +562,10 @@ Firstly we consider the system without any control. Writing down expressions for
.. math::
:label: invpend_energy
\begin{aligned}
T_1 &= \frac{m_1v^2}{2}, \\
T_2 &= \frac{J_c\omega^2}{2}, \\
\Pi_1 &= 0, \\
\Pi_2 &= m_2g\frac{L}{2}\sin(\theta).
\end{aligned}
T_1 = \frac{m_1v^2}{2},
T_2 = \frac{J_c\omega^2}{2},
\Pi_1 = 0,
\Pi_2 = m_2g\frac{L}{2}\sin(\theta).
Here :math:`T_1` and :math:`T_2` stand for kinetic energy of cart and rod respectively, :math:`\Pi_1` and :math:`\Pi_2` stand for potential energy, :math:`v` is a speed of a cart and :math:`\omega` is an angular velocity of the rod. Further we will replace :math:`v` with :math:`\dot x`, :math:`\omega` with :math:`\dot \theta`.

Expand All @@ -567,10 +574,8 @@ As there is viscosity, we write down generalized forces:
.. math::
:label: invpend_forces
\begin{aligned}
Q_1 &= k_1\dot x, \\
Q_2 &= k_2L\dot \theta.
\end{aligned}
Q_1 = k_1\dot x,
Q_2 = k_2L\dot \theta.
Writing down the Langrange equations in case of potential and nonpotential forces we obtain:

Expand All @@ -579,7 +584,7 @@ Writing down the Langrange equations in case of potential and nonpotential force
\frac{d}{dt}(\frac{\partial T}{\partial \dot q_i}) - \frac{\partial T}{\partial q_i} + \frac{\partial \Pi}{\partial q_i} = Q_i.
Here the Lagrange coordinates :math:`q_1 = x, q_2 = \theta`, :math:`T = T_1 + T_2, \Pi = \Pi_1 + \Pi_2`.
Here the Lagrange coordinates :math:`q_1 = x, q_2 = \theta`.

Applying previously obtained values to the equations and adding the control to the first equation, we get:

Expand All @@ -591,7 +596,7 @@ Applying previously obtained values to the equations and adding the control to t
.. math::
:label: invpend2
(J_c + \frac{m_2L^2}{4})\ddot{\theta}+\frac{m_2gL\cos(\theta)}{2} + k_2\dot{\theta}L = 0 .
\left(J_c + \frac{m_2L^2}{4}\right)\ddot{\theta}+\frac{m_2gL\cos(\theta)}{2} + k_2\dot{\theta}L = 0 .
After linerarization in the neighbourhood of :math:`\frac{\pi}{2}` we have :math:`\cos(\theta) \approx \frac{\pi}{2} - \theta`.
Expand All @@ -608,7 +613,7 @@ Defining :math:`x_1 = x, x_2=\dot{x}_1, x_3 = \theta` and :math:`x_4=\dot{x}_3`,
0 & 1 & 0 & 0\\
0 & \frac{-k_1}{m_1} & 0 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & \frac{m_2Lg}{2(J_c+\frac{m_2L^2}{4})} & -\frac{k_2L}{J_c+\frac{m_2L^2}{4}}\end{array}\right]
0 & 0 & \frac{m_2Lg}{2\left(J_c+\frac{m_2L^2}{4}\right)} & -\frac{k_2L}{J_c+\frac{m_2L^2}{4}}\end{array}\right]
\left[\begin{array}{c}
x_1 \\
x_2 \\
Expand All @@ -623,15 +628,6 @@ Defining :math:`x_1 = x, x_2=\dot{x}_1, x_3 = \theta` and :math:`x_4=\dot{x}_3`,
0 \\
-\frac{m_2Lg\pi}{4J_c+m_2L^2} \end{array}\right].
Consider some moment of time :math:`t_1` and final position :math:`x_1(t_1) = x_1, x_2(t_1) = 0, x_3(t_1) = \frac{\pi}{2}, x_4(t_1) = 0`. It is required to calculate the backward reachability sets (tube) for the linearized system :eq:`invpendls` emanating from the given final position and project it onto :math:`(x_1, x_3)` subspace. It is also required to identify whether it’s possible to reach the final position from a given initial position :math:`x_1(t_1) = x_1, x_2(t_1) = v_1, x_3(t_1) = \theta_1, x_4(t_1) = \omega_1` using some admissible control function.

.. raw:: html

<h2>References</h2>

.. [SUN2003] L.Muñoz, X.Sun, R.Horowitz, and L.Alvarez. 2003. Traffic Density
Estimation with the Cell Transmission Model. In *Proceedings of the
American Control Conference*, 3750–3755. Denver, Colorado, USA.
Consider some moment of time :math:`t_1` and final position :math:`x_1(t_1) = x^1_1, x_2(t_1) = 0, x_3(t_1) = \frac{\pi}{2}, x_4(t_1) = 0`. It is required to calculate the backward reachability sets (tube) for the linearized system :eq:`invpendls` emanating from the given final position and project it onto :math:`(x_1, x_3)` subspace. It is also required to identify whether it’s possible to reach the final position from a given initial position :math:`x_1(t_0) = x^0_1, x_2(t_0) = v_1, x_3(t_0) = \theta_1, x_4(t_0) = \omega_1` using some admissible control function.


0 comments on commit c3a5879

Please sign in to comment.