Skip to content

Commit

Permalink
delete unnecessary files
Browse files Browse the repository at this point in the history
  • Loading branch information
yan91083 committed Nov 29, 2023
1 parent ad2eedb commit 6a8503b
Show file tree
Hide file tree
Showing 8 changed files with 226 additions and 36 deletions.
3 changes: 2 additions & 1 deletion python/tabby-eval/.gitignore
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
tmp*
tabby_data_pipeline.egg-info
tabby_data_pipeline.egg-info
log.txt
6 changes: 0 additions & 6 deletions python/tabby-eval/log.txt

This file was deleted.

8 changes: 0 additions & 8 deletions python/tabby-eval/tabby_data_pipeline.egg-info/PKG-INFO

This file was deleted.

13 changes: 0 additions & 13 deletions python/tabby-eval/tabby_data_pipeline.egg-info/SOURCES.txt

This file was deleted.

This file was deleted.

6 changes: 0 additions & 6 deletions python/tabby-eval/tabby_data_pipeline.egg-info/requires.txt

This file was deleted.

This file was deleted.

224 changes: 224 additions & 0 deletions python/tabby/trainer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
import os
import glob
from dataclasses import dataclass, field
from typing import List

import peft
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from datasets import Dataset, load_dataset


class ConstantLengthDataset:
"""
Iterable dataset that returns constant length chunks of tokens from stream of text files.
Args:
tokenizer (Tokenizer): The processor used for proccessing the data.
dataset (dataset.Dataset): Dataset with text files.
infinite (bool): If True the iterator is reset after dataset reaches end else stops.
seq_length (int): Length of token sequences to return.
num_of_sequences (int): Number of token sequences to keep in buffer.
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
"""

def __init__(
self,
tokenizer,
dataset,
infinite=False,
seq_length=1024,
num_of_sequences=1024,
chars_per_token=3.6,
content_field="content",
):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.eos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.infinite = infinite
self.current_size = 0
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
self.content_field = content_field

def __call__(self):
def gen():
for x in self:
yield x

return gen()

def __iter__(self):
for buffer in self._read_dataset_into_buffer():
yield from self._tokenize(buffer)

def _tokenize(self, buffer):
tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]

all_token_ids = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id])

for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]

if len(input_ids) < self.seq_length:
input_ids = all_token_ids[-self.seq_length :]

if len(input_ids) == self.seq_length:
self.current_size += 1
yield dict(input_ids=input_ids, labels=input_ids)

def _read_dataset_into_buffer(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.max_buffer_size:
break
try:
buffer.append(next(iterator)[self.content_field])
buffer_len += len(buffer[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
else:
more_examples = False
break
yield buffer


@dataclass
class TrainLoraArguments:
data_path: str = field(metadata={"help": "Dataset dir for training / eval "})
output_dir: str = field(metadata={"help": "Output dir for checkpoint"})
base_model: str = field(
default="TabbyML/J-350M", metadata={"help": "Base model for fine-tuning"}
)

batch_size: int = 128
micro_batch_size: int = 4
num_epochs: int = 3
learning_rate: float = 3e-4
cutoff_len: int = 256

# Evaluations
val_set_size: int = 2000
eval_steps: int = 200

# Lora Hyperparams
lora_r: int = 8
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_target_modules: List[str] = (
[
"q_proj",
"v_proj",
],
)
resume_from_checkpoint: str = None # either training checkpoint or final adapter
half: bool = True


def parse_args() -> TrainLoraArguments:
parser = HfArgumentParser(TrainLoraArguments)
return parser.parse_args()


def train(args: TrainLoraArguments):
gradient_accumulation_steps = args.batch_size // args.micro_batch_size

model = AutoModelForCausalLM.from_pretrained(
args.base_model, torch_dtype=torch.float16 if args.half else torch.float32
)

tokenizer = AutoTokenizer.from_pretrained(args.base_model)

config = peft.LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
target_modules=args.lora_target_modules,
lora_dropout=args.lora_dropout,
bias="none",
task_type=peft.TaskType.CAUSAL_LM,
)
model = peft.get_peft_model(model, config)

data_files = glob.glob(os.path.join(args.data_path, "*.jsonl"))
print("Collected data files...", data_files)
dataset = load_dataset("json", data_files=data_files)["train"]
data = Dataset.from_generator(ConstantLengthDataset(tokenizer, dataset))

resume_from_checkpoint = args.resume_from_checkpoint
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = False # So the trainer won't try loading its state
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = peft.set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")

model.print_trainable_parameters() # Be more transparent about the % of trainable params.

train_val = data.train_test_split(
test_size=args.val_set_size, shuffle=True, seed=42
)
train_data = train_val["train"].shuffle()
val_data = train_val["test"].shuffle()

trainer = Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=TrainingArguments(
per_device_train_batch_size=args.micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=args.num_epochs,
learning_rate=args.learning_rate,
fp16=args.half,
logging_steps=10,
evaluation_strategy="steps",
save_strategy="steps",
eval_steps=args.eval_steps,
save_steps=args.eval_steps,
output_dir=args.output_dir,
save_total_limit=3,
load_best_model_at_end=True,
),
)
model.config.use_cache = False

old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: peft.get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))

model = torch.compile(model)

trainer.train(resume_from_checkpoint=resume_from_checkpoint)

model.save_pretrained(args.output_dir)

print("\n If there's a warning about missing keys above, please disregard :)")


if __name__ == "__main__":
args = parse_args()
train(args)

0 comments on commit 6a8503b

Please sign in to comment.