-
Notifications
You must be signed in to change notification settings - Fork 4.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
spectrogram and inverse spectrogram (#5779)
* only supports hann, hamming and all-one window * inverse spectrogram does not support length parameter * spectrogram always returns torch.view_as_real(out) as ncnn does not support complex typed mat yet * inverse spectrogram always accepts torch.view_as_complex(in) as ncnn does not support complex typed mat yet
- Loading branch information
Showing
33 changed files
with
3,155 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
// Tencent is pleased to support the open source community by making ncnn available. | ||
// | ||
// Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | ||
// | ||
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | ||
// in compliance with the License. You may obtain a copy of the License at | ||
// | ||
// https://opensource.org/licenses/BSD-3-Clause | ||
// | ||
// Unless required by applicable law or agreed to in writing, software distributed | ||
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
// CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations under the License. | ||
|
||
#include "inversespectrogram.h" | ||
|
||
namespace ncnn { | ||
|
||
InverseSpectrogram::InverseSpectrogram() | ||
{ | ||
one_blob_only = true; | ||
support_inplace = false; | ||
} | ||
|
||
int InverseSpectrogram::load_param(const ParamDict& pd) | ||
{ | ||
n_fft = pd.get(0, 0); | ||
returns = pd.get(1, 0); | ||
hoplen = pd.get(2, n_fft / 4); | ||
winlen = pd.get(3, n_fft); | ||
window_type = pd.get(4, 0); | ||
center = pd.get(5, 1); | ||
normalized = pd.get(7, 0); | ||
|
||
// assert winlen <= n_fft | ||
// generate window | ||
window_data.create(normalized == 2 ? n_fft + 1 : n_fft); | ||
{ | ||
float* p = window_data; | ||
for (int i = 0; i < (n_fft - winlen) / 2; i++) | ||
{ | ||
*p++ = 0.f; | ||
} | ||
if (window_type == 0) | ||
{ | ||
// all ones | ||
for (int i = 0; i < winlen; i++) | ||
{ | ||
*p++ = 1.f; | ||
} | ||
} | ||
if (window_type == 1) | ||
{ | ||
// hann window | ||
for (int i = 0; i < winlen; i++) | ||
{ | ||
*p++ = 0.5f * (1 - cosf(2 * 3.14159265358979323846 * i / winlen)); | ||
} | ||
} | ||
if (window_type == 2) | ||
{ | ||
// hamming window | ||
for (int i = 0; i < winlen; i++) | ||
{ | ||
*p++ = 0.54f - 0.46f * cosf(2 * 3.14159265358979323846 * i / winlen); | ||
} | ||
} | ||
for (int i = 0; i < n_fft - winlen - (n_fft - winlen) / 2; i++) | ||
{ | ||
*p++ = 0.f; | ||
} | ||
|
||
// pre-calculated window norm factor | ||
if (normalized == 2) | ||
{ | ||
float sqsum = 0.f; | ||
for (int i = 0; i < n_fft; i++) | ||
{ | ||
sqsum += window_data[i] * window_data[i]; | ||
} | ||
window_data[n_fft] = sqrt(sqsum); | ||
} | ||
} | ||
|
||
return 0; | ||
} | ||
|
||
int InverseSpectrogram::forward(const Mat& bottom_blob, Mat& top_blob, const Option& opt) const | ||
{ | ||
// https://github.com/librosa/librosa/blob/main/librosa/core/spectrum.py#L630 | ||
|
||
// TODO custom window | ||
// TODO output length | ||
|
||
const int frames = bottom_blob.h; | ||
const int freqs = bottom_blob.c; | ||
// assert freqs == n_fft or freqs == n_fft / 2 + 1 | ||
|
||
const int onesided = freqs == n_fft / 2 + 1 ? 1 : 0; | ||
|
||
const int outsize = center ? (frames - 1) * hoplen + (n_fft - n_fft / 2 * 2) : (frames - 1) * hoplen + n_fft; | ||
|
||
const size_t elemsize = bottom_blob.elemsize; | ||
|
||
if (returns == 0) | ||
{ | ||
top_blob.create(2, outsize, elemsize, opt.blob_allocator); | ||
} | ||
else | ||
{ | ||
top_blob.create(outsize, elemsize, opt.blob_allocator); | ||
} | ||
if (top_blob.empty()) | ||
return -100; | ||
|
||
Mat window_sumsquare(outsize + n_fft, elemsize, opt.workspace_allocator); | ||
if (window_sumsquare.empty()) | ||
return -100; | ||
|
||
top_blob.fill(0.f); | ||
window_sumsquare.fill(0.f); | ||
|
||
for (int j = 0; j < frames; j++) | ||
{ | ||
// collect complex | ||
Mat sp(2, n_fft); | ||
if (onesided == 1) | ||
{ | ||
for (int k = 0; k < n_fft / 2 + 1; k++) | ||
{ | ||
sp.row(k)[0] = bottom_blob.channel(k).row(j)[0]; | ||
sp.row(k)[1] = bottom_blob.channel(k).row(j)[1]; | ||
} | ||
for (int k = n_fft / 2 + 1; k < n_fft; k++) | ||
{ | ||
sp.row(k)[0] = bottom_blob.channel(n_fft - k).row(j)[0]; | ||
sp.row(k)[1] = -bottom_blob.channel(n_fft - k).row(j)[1]; | ||
} | ||
} | ||
else | ||
{ | ||
for (int k = 0; k < n_fft; k++) | ||
{ | ||
sp.row(k)[0] = bottom_blob.channel(k).row(j)[0]; | ||
sp.row(k)[1] = bottom_blob.channel(k).row(j)[1]; | ||
} | ||
} | ||
|
||
if (normalized == 1) | ||
{ | ||
float norm = sqrt(n_fft); | ||
for (int i = 0; i < 2 * n_fft; i++) | ||
{ | ||
sp[i] *= norm; | ||
} | ||
} | ||
if (normalized == 2) | ||
{ | ||
float norm = window_data[n_fft]; | ||
for (int i = 0; i < 2 * n_fft; i++) | ||
{ | ||
sp[i] *= norm; | ||
} | ||
} | ||
|
||
#pragma omp parallel for num_threads(opt.num_threads) | ||
for (int i = 0; i < n_fft; i++) | ||
{ | ||
// inverse dft | ||
float re = 0.f; | ||
float im = 0.f; | ||
for (int k = 0; k < n_fft; k++) | ||
{ | ||
double angle = 2 * 3.14159265358979323846 * i * k / n_fft; | ||
|
||
re += sp.row(k)[0] * cosf(angle) - sp.row(k)[1] * sinf(angle); | ||
im += sp.row(k)[0] * sinf(angle) + sp.row(k)[1] * cosf(angle); | ||
} | ||
|
||
re /= n_fft; | ||
im /= n_fft; | ||
|
||
// apply window | ||
re *= window_data[i]; | ||
im *= window_data[i]; | ||
|
||
int output_index = j * hoplen + i; | ||
if (center == 1) | ||
{ | ||
output_index -= n_fft / 2; | ||
} | ||
if (output_index >= 0 && output_index < outsize) | ||
{ | ||
// square window | ||
window_sumsquare[output_index] += window_data[i] * window_data[i]; | ||
|
||
if (returns == 0) | ||
{ | ||
top_blob.row(output_index)[0] += re; | ||
top_blob.row(output_index)[1] += im; | ||
} | ||
if (returns == 1) | ||
{ | ||
top_blob[output_index] += re; | ||
} | ||
if (returns == 2) | ||
{ | ||
top_blob[output_index] += im; | ||
} | ||
} | ||
} | ||
} | ||
|
||
// square window norm | ||
if (returns == 0) | ||
{ | ||
for (int i = 0; i < outsize; i++) | ||
{ | ||
if (window_sumsquare[i] != 0.f) | ||
{ | ||
top_blob.row(i)[0] /= window_sumsquare[i]; | ||
top_blob.row(i)[1] /= window_sumsquare[i]; | ||
} | ||
} | ||
} | ||
else | ||
{ | ||
for (int i = 0; i < outsize; i++) | ||
{ | ||
if (window_sumsquare[i] != 0.f) | ||
top_blob[i] /= window_sumsquare[i]; | ||
} | ||
} | ||
|
||
return 0; | ||
} | ||
|
||
} // namespace ncnn |
Oops, something went wrong.