-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into test-stratify-data
- Loading branch information
Showing
20 changed files
with
383 additions
and
291 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -21,3 +21,5 @@ allpopsamples_hlye.csv$ | |
^serocalculator.*\.tgz$ | ||
^inst/extdata | ||
^CRAN-SUBMISSION$ | ||
^README\.qmd$ | ||
^codecov\.yml$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,7 @@ | ||
Package: serocalculator | ||
Type: Package | ||
Title: Estimating Infection Rates from Serological Data | ||
Version: 1.1.0.9000 | ||
Version: 1.2.0 | ||
Authors@R: c( | ||
person(given = "Peter", family = "Teunis", email = "[email protected]", role = c("aut", "cph"), comment = "Author of the method and original code."), | ||
person(given = "Kristina", family = "Lai", email = "[email protected]", role = c("aut", "cre")), | ||
|
@@ -42,11 +42,12 @@ Suggests: | |
readr, | ||
bookdown, | ||
ggbeeswarm, | ||
DT | ||
DT, | ||
spelling | ||
LazyData: true | ||
Encoding: UTF-8 | ||
URL: https://github.com/UCD-SERG/serocalculator, https://ucd-serg.github.io/serocalculator/ | ||
RoxygenNote: 7.3.1 | ||
RoxygenNote: 7.3.2 | ||
NeedsCompilation: no | ||
LinkingTo: | ||
Rcpp | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,55 +1,96 @@ | ||
#' | ||
#' @title Summarize a cross-sectional antibody survey data set | ||
#' @title Summarize cross-sectional antibody survey data | ||
#' @description | ||
#' This function is a `summary()` method for `pop_data` objects | ||
#' [summary()] method for `pop_data` objects | ||
#' | ||
#' @param object a `pop_data` object | ||
#' @param object a `pop_data` object (from [as_pop_data()]) | ||
#' @param strata a [character()] specifying grouping column(s) | ||
#' @param ... unused | ||
#' | ||
#' @returns a list containing two summary tables: one of `age` and one of `value`, stratified by `antigen_iso` | ||
#' @returns a `summary.pop_data` object, which is a list containing two summary tables: | ||
#' | ||
#' * `age_summary` summarizing `age` | ||
#' * `ab_summary` summarizing `value`, stratified by `antigen_iso` | ||
#' | ||
#' @export | ||
#' @examples | ||
#' library(dplyr) | ||
#' | ||
#' xs_data <- load_pop_data("https://osf.io/download//n6cp3/") | ||
#' summary(xs_data, strata = "Country") | ||
#' | ||
#' summary(xs_data) | ||
#' | ||
summary.pop_data <- function(object, ...) { | ||
summary.pop_data <- function(object, strata = NULL, ...) { | ||
# get relevant columns from object | ||
age_column <- object %>% get_age_var() | ||
value_column <- object %>% get_value_var() | ||
id_column <- object %>% get_id_var() | ||
|
||
# create a list of the columns | ||
cols <- c(age_column, id_column, strata) | ||
|
||
ages <- | ||
object %>% | ||
distinct(.data$id, .data$age) | ||
|
||
cat("\nn =", nrow(ages), "\n") | ||
distinct(across(all_of(cols))) | ||
|
||
cat("\nDistribution of age: \n\n") | ||
age_summary <- | ||
ages %>% | ||
pull("age") %>% | ||
summary() %>% | ||
print() | ||
|
||
cat("\nDistributions of antigen-isotype measurements:\n\n") | ||
summarise( | ||
.by = all_of(strata), | ||
n = n(), | ||
min = min(.data[[age_column]]), | ||
first_quartile = quantile(.data[[age_column]], 0.25), | ||
median = median(.data[[age_column]]), | ||
mean = mean(.data[[age_column]]), | ||
third_quartile = quantile(.data[[age_column]], 0.75), | ||
max = max(.data[[age_column]]) | ||
) | ||
|
||
ab_summary <- | ||
object %>% | ||
dplyr::summarize( | ||
.by = .data$antigen_iso, | ||
Min = object %>% get_value() %>% min(na.rm = TRUE), | ||
`1st Qu.` = object %>% get_value() %>% quantile(.25, na.rm = TRUE), | ||
Median = object %>% get_value() %>% median(), | ||
`3rd Qu.` = object %>% get_value() %>% quantile(.75, na.rm = TRUE), | ||
Max = object %>% get_value() %>% max(na.rm = TRUE), | ||
`# NAs` = object %>% get_value() %>% is.na() %>% sum() | ||
) %>% | ||
as.data.frame() %>% | ||
print() | ||
|
||
to_return <- list( | ||
n = nrow(ages), | ||
age_summary = age_summary, | ||
ab_summary = ab_summary | ||
) | ||
|
||
return(invisible(to_return)) | ||
.by = all_of(c("antigen_iso", strata)), | ||
across( | ||
.cols = all_of(value_column), | ||
.fns = list( | ||
Min = ~ min(.x, na.rm = TRUE), | ||
`1st Qu.` = ~ quantile(.x, p = .25, na.rm = TRUE), | ||
Median = ~ median(.x, na.rm = TRUE), | ||
`3rd Qu.` = ~ quantile(.x, p = .75, na.rm = TRUE), | ||
Max = ~ max(.x, na.rm = TRUE), | ||
`# NAs` = ~ is.na(.x) %>% sum() | ||
), | ||
.names = "{.fn}" | ||
)) | ||
|
||
to_return <- list(n = nrow(ages), | ||
age_summary = age_summary, | ||
ab_summary = ab_summary) | ||
|
||
class(to_return) = "summary.pop_data" | ||
|
||
return(to_return) | ||
} | ||
|
||
|
||
#' Print method for [summary.pop_data] objects | ||
#' @param x an object of class `"summary.pop_data"`; usually, the result of a call to [summary.pop_data()] | ||
#' @rdname summary.pop_data | ||
#' @export | ||
print.summary.pop_data = function(x, ...) | ||
{ | ||
n_obs = x$age_summary %>% pull("n") %>% sum() | ||
|
||
cat("\nn =", n_obs, "\n") | ||
|
||
cat("\nDistribution of age: \n\n") | ||
|
||
x$age_summary %>% print() | ||
|
||
cat("\nDistributions of antigen-isotype measurements:\n\n") | ||
|
||
x$ab_summary %>% print() | ||
|
||
cat("\n") | ||
|
||
invisible(x) | ||
} |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
# Filter population data for Pakistan | ||
xs_data <- load_pop_data( | ||
file_path = "https://osf.io/download//n6cp3/", | ||
age = "Age", | ||
value = "result", | ||
id = "index_id", | ||
standardize = TRUE | ||
) %>% | ||
filter(Country == "Pakistan") | ||
|
||
# get noise data | ||
noise <- load_noise_params("https://osf.io/download//hqy4v/") %>% | ||
filter(Country == "Pakistan") | ||
|
||
# get curve data | ||
curve <- load_curve_params("https://osf.io/download/rtw5k/") | ||
|
||
# Initial estimates for lambda | ||
start <- .05 | ||
|
||
# Estimate incidence | ||
fit <- est.incidence( | ||
pop_data = xs_data, | ||
curve_param = curve, | ||
noise_param = noise, | ||
antigen_isos = c("HlyE_IgG", "HlyE_IgA") | ||
) | ||
|
||
typhoid_results <- fit %>% | ||
summary.seroincidence( | ||
coverage = .95, | ||
start = start | ||
) %>% | ||
mutate( | ||
ageCat = NULL, | ||
antigen.iso = paste(collapse = "+", "HlyE_IgG") | ||
) %>% | ||
structure(noise.parameters = noise) | ||
|
||
saveRDS(object = typhoid_results,file = "tests/testthat/fixtures/typhoid_results.rds") |
Oops, something went wrong.