Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[model_card] Keep the model card readable even with many datasets #3088

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 7 additions & 5 deletions sentence_transformers/model_card_template.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

# {{ model_name if model_name else "Sentence Transformer model" }}

This is a [sentence-transformers](https://www.SBERT.net) model{% if base_model %} finetuned from [{{ base_model }}](https://huggingface.co/{{ base_model }}){% else %} trained{% endif %}{% if train_datasets | selectattr("name") | list %} on the {% for dataset in (train_datasets | selectattr("name")) %}{% if dataset.id %}[{{ dataset.name if dataset.name else dataset.id }}](https://huggingface.co/datasets/{{ dataset.id }}){% else %}{{ dataset.name }}{% endif %}{% if not loop.last %}{% if loop.index == (train_datasets | selectattr("name") | list | length - 1) %} and {% else %}, {% endif %}{% endif %}{% endfor %} dataset{{"s" if train_datasets | selectattr("name") | list | length > 1 else ""}}{% endif %}. It maps sentences & paragraphs to a {{ output_dimensionality }}-dimensional dense vector space and can be used for {{ task_name }}.
This is a [sentence-transformers](https://www.SBERT.net) model{% if base_model %} finetuned from [{{ base_model }}](https://huggingface.co/{{ base_model }}){% else %} trained{% endif %}{% if train_datasets | selectattr("name") | list %} on {% if train_datasets | selectattr("name") | map(attribute="name") | join(", ") | length > 200 %}{{ train_datasets | length }}{% else %}the {% for dataset in (train_datasets | selectattr("name")) %}{% if dataset.id %}[{{ dataset.name if dataset.name else dataset.id }}](https://huggingface.co/datasets/{{ dataset.id }}){% else %}{{ dataset.name }}{% endif %}{% if not loop.last %}{% if loop.index == (train_datasets | selectattr("name") | list | length - 1) %} and {% else %}, {% endif %}{% endif %}{% endfor %}{% endif %} dataset{{"s" if train_datasets | selectattr("name") | list | length > 1 else ""}}{% endif %}. It maps sentences & paragraphs to a {{ output_dimensionality }}-dimensional dense vector space and can be used for {{ task_name }}.

## Model Details

Expand Down Expand Up @@ -156,18 +156,20 @@ You can finetune this model on your own dataset.
## Training Details
{% for dataset_type, dataset_list in [("training", train_datasets), ("evaluation", eval_datasets)] %}{% if dataset_list %}
### {{ dataset_type.title() }} Dataset{{"s" if dataset_list | length > 1 else ""}}
{% for dataset in dataset_list %}
{% for dataset in dataset_list %}{% if dataset_list | length > 3 %}<details><summary>{{ dataset['name'] or 'Unnamed Dataset' }}</summary>
{% endif %}
#### {{ dataset['name'] or 'Unnamed Dataset' }}

{% if dataset['name'] %}* Dataset: {% if 'id' in dataset %}[{{ dataset['name'] }}](https://huggingface.co/datasets/{{ dataset['id'] }}){% else %}{{ dataset['name'] }}{% endif %}
{% if dataset['name'] %}
* Dataset: {% if 'id' in dataset %}[{{ dataset['name'] }}](https://huggingface.co/datasets/{{ dataset['id'] }}){% else %}{{ dataset['name'] }}{% endif %}
{%- if 'revision' in dataset and 'id' in dataset %} at [{{ dataset['revision'][:7] }}](https://huggingface.co/datasets/{{ dataset['id'] }}/tree/{{ dataset['revision'] }}){% endif %}{% endif %}
{% if dataset['size'] %}* Size: {{ "{:,}".format(dataset['size']) }} {{ dataset_type }} samples
{% endif %}* Columns: {% if dataset['columns'] | length == 1 %}{{ dataset['columns'][0] }}{% elif dataset['columns'] | length == 2 %}{{ dataset['columns'][0] }} and {{ dataset['columns'][1] }}{% else %}{{ dataset['columns'][:-1] | join(', ') }}, and {{ dataset['columns'][-1] }}{% endif %}
{% if dataset['stats_table'] %}* Approximate statistics based on the first {{ [dataset['size'], 1000] | min }} samples:
{{ dataset['stats_table'] }}{% endif %}{% if dataset['examples_table'] %}* Samples:
{{ dataset['examples_table'] }}{% endif %}* Loss: {% if dataset["loss"]["fullname"].startswith("sentence_transformers.") %}[<code>{{ dataset["loss"]["fullname"].split(".")[-1] }}</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#{{ dataset["loss"]["fullname"].split(".")[-1].lower() }}){% else %}<code>{{ dataset["loss"]["fullname"] }}</code>{% endif %}{% if "config_code" in dataset["loss"] %} with these parameters:
{{ dataset["loss"]["config_code"] }}{% endif %}
{% endfor %}{% endif %}{% endfor -%}
{% if dataset_list | length > 3 %}</details>
{% endif %}{% endfor %}{% endif %}{% endfor -%}

{% if all_hyperparameters %}
### Training Hyperparameters
Expand Down
111 changes: 111 additions & 0 deletions tests/test_model_card.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
from __future__ import annotations

import pytest
from datasets import Dataset, DatasetDict

from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer
from sentence_transformers.model_card import generate_model_card


@pytest.fixture(scope="session")
def dummy_dataset():
"""
Dummy dataset for testing purposes. The dataset looks as follows:
{
"anchor": ["anchor 1", "anchor 2", ..., "anchor 10"],
"positive": ["positive 1", "positive 2", ..., "positive 10"],
"negative": ["negative 1", "negative 2", ..., "negative 10"],
}
"""
return Dataset.from_dict(
{
"anchor": [f"anchor {i}" for i in range(1, 11)],
"positive": [f"positive {i}" for i in range(1, 11)],
"negative": [f"negative {i}" for i in range(1, 11)],
}
)


@pytest.mark.parametrize(
("num_datasets", "expected_substrings"),
[
# 0 actually refers to just a single dataset
(
0,
[
"This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers-testing/stsb-bert-tiny-safetensors](https://huggingface.co/sentence-transformers-testing/stsb-bert-tiny-safetensors).",
"**Maximum Sequence Length:** 512 tokens",
"**Output Dimensionality:** 128 dimensions",
"**Similarity Function:** Cosine Similarity",
"#### Unnamed Dataset",
" | <code>anchor 1</code> | <code>positive 1</code> | <code>negative 1</code> |",
"* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:",
],
),
(
1,
[
"This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers-testing/stsb-bert-tiny-safetensors](https://huggingface.co/sentence-transformers-testing/stsb-bert-tiny-safetensors) on the train_0 dataset.",
"#### train_0",
],
),
(
2,
[
"This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers-testing/stsb-bert-tiny-safetensors](https://huggingface.co/sentence-transformers-testing/stsb-bert-tiny-safetensors) on the train_0 and train_1 datasets.",
"#### train_0",
"#### train_1",
],
),
(
10,
[
"This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers-testing/stsb-bert-tiny-safetensors](https://huggingface.co/sentence-transformers-testing/stsb-bert-tiny-safetensors) on the train_0, train_1, train_2, train_3, train_4, train_5, train_6, train_7, train_8 and train_9 datasets.",
"<details><summary>train_0</summary>", # We start using <details><summary> if we have more than 3 datasets
"#### train_0",
"</details>\n<details><summary>train_9</summary>",
"#### train_9",
],
),
# We start using "50 datasets" when the ", "-joined dataset name exceed 200 characters
(
50,
[
"This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers-testing/stsb-bert-tiny-safetensors](https://huggingface.co/sentence-transformers-testing/stsb-bert-tiny-safetensors) on 50 datasets.",
"<details><summary>train_0</summary>",
"#### train_0",
"</details>\n<details><summary>train_49</summary>",
"#### train_49",
],
),
],
)
def test_model_card_base(
stsb_bert_tiny_model: SentenceTransformer,
dummy_dataset: Dataset,
num_datasets: int,
expected_substrings: list[str],
) -> None:
model = stsb_bert_tiny_model

train_dataset = dummy_dataset
if num_datasets:
train_dataset = DatasetDict({f"train_{i}": train_dataset for i in range(num_datasets)})

# This adds data to model.model_card_data
SentenceTransformerTrainer(
model,
train_dataset=train_dataset,
)

model_card = generate_model_card(model)

# For debugging purposes, we save the model card to a file
# with open(f"test_model_card_{num_datasets}.md", "w", encoding="utf8") as f:
# f.write(model_card)

for substring in expected_substrings:
assert substring in model_card

# We don't want to have two consecutive empty lines anywhere
assert "\n\n\n" not in model_card