-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
545 lines (429 loc) · 21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
"""Predicting 3d poses from 2d joints"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import time
import h5py
import copy
import matplotlib.pyplot as plt
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import procrustes
import viz_1
#import cameras
import data_utils_1
import model_D
tf.app.flags.DEFINE_float("learning_rate", 1e-3, "Learning rate")
tf.app.flags.DEFINE_float("dropout", 1, "Dropout keep probability. 1 means no dropout")
tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size to use during training")
tf.app.flags.DEFINE_integer("epochs", 200, "How many epochs we should train for")
tf.app.flags.DEFINE_boolean("camera_frame", False, "Convert 3d poses to camera coordinates")
tf.app.flags.DEFINE_boolean("max_norm", False, "Apply maxnorm constraint to the weights")
tf.app.flags.DEFINE_boolean("batch_norm", False, "Use batch_normalization")
# Data loading
tf.app.flags.DEFINE_boolean("predict_14", False, "predict 14 joints")
tf.app.flags.DEFINE_boolean("use_sh", False, "Use 2d pose predictions from StackedHourglass")
tf.app.flags.DEFINE_string("action","All", "The action to train on. 'All' means all the actions")
# Architecture
tf.app.flags.DEFINE_integer("linear_size", 1024, "Size of each model layer.")
tf.app.flags.DEFINE_integer("num_layers", 2, "Number of layers in the model.")
tf.app.flags.DEFINE_boolean("residual", False, "Whether to add a residual connection every 2 layers")
# Evaluation
tf.app.flags.DEFINE_boolean("procrustes", False, "Apply procrustes analysis at test time")
tf.app.flags.DEFINE_boolean("evaluateActionWise",False, "The dataset to use either h36m or heva")
# Directories
#tf.app.flags.DEFINE_string("cameras_path","data/h36m/cameras.h5","Directory to load camera parameters")
tf.app.flags.DEFINE_string("data_dir", "data/ITOP/", "Data directory")
tf.app.flags.DEFINE_string("train_dir", "Training", "Training directory.")
# openpose
tf.app.flags.DEFINE_string("pose_estimation_json", "/tmp/", "pose estimation json output directory, openpose or tf-pose-estimation")
tf.app.flags.DEFINE_boolean("interpolation", False, "interpolate openpose json")
tf.app.flags.DEFINE_float("multiplier", 0.1, "interpolation frame range")
tf.app.flags.DEFINE_boolean("write_gif", False, "write final anim gif")
tf.app.flags.DEFINE_integer("gif_fps", 30, "output gif framerate")
tf.app.flags.DEFINE_integer("verbose", 2, "0:Error, 1:Warning, 2:INFO*(default), 3:debug")
# Train or load
tf.app.flags.DEFINE_boolean("sample", False, "Set to True for sampling.")
tf.app.flags.DEFINE_boolean("use_cpu", False, "Whether to use the CPU")
tf.app.flags.DEFINE_integer("load", 0, "Try to load a previous checkpoint.")
# Misc
tf.app.flags.DEFINE_boolean("use_fp16", False, "Train using fp16 instead of fp32.")
FLAGS = tf.app.flags.FLAGS
train_dir = os.path.join( FLAGS.train_dir,
FLAGS.action,
'dropout_{0}'.format(FLAGS.dropout),
'epochs_{0}'.format(FLAGS.epochs) if FLAGS.epochs > 0 else '',
'lr_{0}'.format(FLAGS.learning_rate),
'residual' if FLAGS.residual else 'not_residual',
'depth_{0}'.format(FLAGS.num_layers),
'linear_size{0}'.format(FLAGS.linear_size),
'batch_size_{0}'.format(FLAGS.batch_size),
'procrustes' if FLAGS.procrustes else 'no_procrustes',
'maxnorm' if FLAGS.max_norm else 'no_maxnorm',
'batch_normalization' if FLAGS.batch_norm else 'no_batch_normalization',
'use_stacked_hourglass' if FLAGS.use_sh else 'not_stacked_hourglass',
'predict_14' if FLAGS.predict_14 else 'predict_17')
print( train_dir )
summaries_dir = os.path.join( train_dir, "log" ) # Directory for TB summaries
# To avoid race conditions: https://github.com/tensorflow/tensorflow/issues/7448
os.system('mkdir -p {}'.format(summaries_dir))
def create_model( session, actions, batch_size ):
"""
Create model and initialize it or load its parameters in a session
Args
session: tensorflow session
actions: list of string. Actions to train/test on
batch_size: integer. Number of examples in each batch
Returns
model: The created (or loaded) model
Raises
ValueError if asked to load a model, but the checkpoint specified by
FLAGS.load cannot be found.
"""
model = model_D.LinearModel(
FLAGS.linear_size,
FLAGS.num_layers,
FLAGS.residual,
FLAGS.batch_norm,
FLAGS.max_norm,
batch_size,
FLAGS.learning_rate,
summaries_dir,
FLAGS.predict_14,
dtype=tf.float16 if FLAGS.use_fp16 else tf.float32)
if FLAGS.load <= 0:
# Create a new model from scratch
print("Creating model with fresh parameters.")
session.run( tf.global_variables_initializer() )
return model
# Load a previously saved model
ckpt = tf.train.get_checkpoint_state( train_dir, latest_filename="checkpoint")
print( "train_dir", train_dir )
if ckpt and ckpt.model_checkpoint_path:
# Check if the specific checkpoint exists
if FLAGS.load > 0:
if os.path.isfile(os.path.join(train_dir,"checkpoint-{0}.index".format(FLAGS.load))):
ckpt_name = os.path.join( os.path.join(train_dir,"checkpoint-{0}".format(FLAGS.load)) )
else:
raise ValueError("Asked to load checkpoint {0}, but it does not seem to exist".format(FLAGS.load))
else:
ckpt_name = os.path.basename( ckpt.model_checkpoint_path )
print("Loading model {0}".format( ckpt_name ))
model.saver.restore( session, ckpt.model_checkpoint_path )
return model
else:
print("Could not find checkpoint. Aborting.")
raise( ValueError, "Checkpoint {0} does not seem to exist".format( ckpt.model_checkpoint_path ) )
return model
def train():
"""Train a linear model for 3d pose estimation"""
actions = data_utils_1.define_actions( FLAGS.action )
number_of_actions = len( actions )
# Load camera parameters
SUBJECT_IDS = [1,2,3,4]
#rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
# Load 3d data and load (or create) 2d projections
train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d = data_utils_1.read_3d_data(
actions, FLAGS.data_dir, FLAGS.camera_frame, FLAGS.predict_14 )
# Read stacked hourglass 2D predictions if use_sh, otherwise use groundtruth 2D projections
if FLAGS.use_sh:
train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils_1.read_2d_predictions(actions, FLAGS.data_dir)
# else:
# train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils_1.create_2d_data( actions, FLAGS.data_dir, rcams )
print( "done reading and normalizing data." )
# Avoid using the GPU if requested
device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
with tf.Session(config=tf.ConfigProto(
device_count=device_count,
allow_soft_placement=True )) as sess:
# === Create the model ===
print("Creating %d bi-layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
model = create_model( sess, actions, FLAGS.batch_size )
model.train_writer.add_graph( sess.graph )
print("Model created")
#=== This is the training loop ===
step_time, loss, val_loss = 0.0, 0.0, 0.0
current_step = 0 if FLAGS.load <= 0 else FLAGS.load + 1
previous_losses = []
step_time, loss = 0, 0
current_epoch = 0
log_every_n_batches = 100
for _ in xrange( FLAGS.epochs ):
current_epoch = current_epoch + 1
# === Load training batches for one epoch ===
encoder_inputs, decoder_outputs = model.get_all_batches( train_set_2d, train_set_3d, FLAGS.camera_frame, training=True )
nbatches = len( encoder_inputs )
print("There are {0} train batches".format( nbatches ))
start_time, loss = time.time(), 0.
# === Loop through all the training batches ===
for i in range( nbatches ):
if (i+1) % log_every_n_batches == 0:
# Print progress every log_every_n_batches batches
print("Working on epoch {0}, batch {1} / {2}... ".format( current_epoch, i+1, nbatches), end="" )
enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
step_loss, loss_summary, lr_summary, _ = model.step( sess, enc_in, dec_out, FLAGS.dropout, isTraining=True )
if (i+1) % log_every_n_batches == 0:
# Log and print progress every log_every_n_batches batches
model.train_writer.add_summary( loss_summary, current_step )
model.train_writer.add_summary( lr_summary, current_step )
step_time = (time.time() - start_time)
start_time = time.time()
print("done in {0:.2f} ms".format( 1000*step_time / log_every_n_batches ) )
loss += step_loss
current_step += 1
# === end looping through training batches ===
loss = loss / nbatches
print("=============================\n"
"Global step: %d\n"
"Learning rate: %.2e\n"
"Train loss avg: %.4f\n"
"=============================" % (model.global_step.eval(),
model.learning_rate.eval(), loss) )
# === End training for an epoch ===
# === Testing after this epoch ===
isTraining = False
if FLAGS.evaluateActionWise:
print("{0:=^12} {1:=^6}".format("Action", "m")) # line of 30 equal signs
cum_err = 0
for action in actions:
print("{0:<12} ".format(action), end="")
# Get 2d and 3d testing data for this action
action_test_set_2d = get_action_subset( test_set_2d, action )
action_test_set_3d = get_action_subset( test_set_3d, action )
encoder_inputs, decoder_outputs = model.get_all_batches( action_test_set_2d, action_test_set_3d, FLAGS.camera_frame, training=False)
act_err, _, step_time, loss = evaluate_batches( sess, model,
data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
current_step, encoder_inputs, decoder_outputs )
cum_err = cum_err + act_err
print("{0:>6.2f}".format(act_err))
summaries = sess.run( model.err_mm_summary, {model.err_mm: float(cum_err/float(len(actions)))} )
model.test_writer.add_summary( summaries, current_step )
print("{0:<12} {1:>6.2f}".format("Average", cum_err/float(len(actions) )))
print("{0:=^19}".format(''))
else:
n_joints = 17 if not(FLAGS.predict_14) else 14
encoder_inputs, decoder_outputs = model.get_all_batches( test_set_2d, test_set_3d, FLAGS.camera_frame, training=False)
total_err, joint_err, step_time, loss = evaluate_batches( sess, model,
data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
current_step, encoder_inputs, decoder_outputs, current_epoch )
print("=============================\n"
"Step-time (ms): %.4f\n"
"Val loss avg: %.4f\n"
"Val error avg (m): %.2f\n"
"=============================" % ( 1000*step_time, loss, total_err ))
for i in range(n_joints):
# 6 spaces, right-aligned, 5 decimal places
print("Error in joint {0:02d} (m): {1:>5.2f}".format(i+1, joint_err[i]))
print("=============================")
# Log the error to tensorboard
summaries = sess.run( model.err_mm_summary, {model.err_mm: total_err} )
model.test_writer.add_summary( summaries, current_step )
# Save the model
print( "Saving the model... ", end="" )
start_time = time.time()
model.saver.save(sess, os.path.join(train_dir, 'checkpoint'), global_step=current_step )
print( "done in {0:.2f} ms".format(1000*(time.time() - start_time)) )
# Reset global time and loss
step_time, loss = 0, 0
sys.stdout.flush()
#def get_action_subset( poses_set, action ):
"""
Given a preloaded dictionary of poses, load the subset of a particular action
Args
poses_set: dictionary with keys k=(subject, action, seqname),
values v=(nxd matrix of poses)
action: string. The action that we want to filter out
Returns
poses_subset: dictionary with same structure as poses_set, but only with the
specified action.
"""
# return {k:v for k, v in poses_set.items() if k[1] == action}
def evaluate_batches( sess, model,
data_mean_3d, data_std_3d, dim_to_use_3d, dim_to_ignore_3d,
data_mean_2d, data_std_2d, dim_to_use_2d, dim_to_ignore_2d,
current_step, encoder_inputs, decoder_outputs, current_epoch=0 ):
"""
Generic method that evaluates performance of a list of batches.
May be used to evaluate all actions or a single action.
Args
sess
model
data_mean_3d
data_std_3d
dim_to_use_3d
dim_to_ignore_3d
data_mean_2d
data_std_2d
dim_to_use_2d
dim_to_ignore_2d
current_step
encoder_inputs
decoder_outputs
current_epoch
Returns
total_err
joint_err
step_time
loss
"""
n_joints = 17 if not(FLAGS.predict_14) else 14
nbatches = len( encoder_inputs )
# Loop through test examples
all_dists, start_time, loss = [], time.time(), 0.
log_every_n_batches = 100
for i in range(nbatches):
if current_epoch > 0 and (i+1) % log_every_n_batches == 0:
print("Working on test epoch {0}, batch {1} / {2}".format( current_epoch, i+1, nbatches) )
enc_in, dec_out = encoder_inputs[i], decoder_outputs[i]
dp = 1.0 # dropout keep probability is always 1 at test time
step_loss, loss_summary, poses3d = model.step( sess, enc_in, dec_out, dp, isTraining=False )
loss += step_loss
# denormalize
enc_in = data_utils_1.unNormalizeData( enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d )
dec_out = data_utils_1.unNormalizeData( dec_out, data_mean_3d, data_std_3d, dim_to_ignore_3d )
poses3d = data_utils_1.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d )
# Keep only the relevant dimensions
dtu3d = np.hstack( (np.arange(3), dim_to_use_3d) ) if not(FLAGS.predict_14) else dim_to_use_3d
dec_out = dec_out[:, dtu3d]
poses3d = poses3d[:, dtu3d]
assert dec_out.shape[0] == FLAGS.batch_size
assert poses3d.shape[0] == FLAGS.batch_size
"""if FLAGS.procrustes:
# Apply per-frame procrustes alignment if asked to do so
for j in range(FLAGS.batch_size):
gt = np.reshape(dec_out[j,:],[-1,3])
out = np.reshape(poses3d[j,:],[-1,3])
_, Z, T, b, c = procrustes.compute_similarity_transform(gt,out,compute_optimal_scale=True)
out = (b*out.dot(T))+c
poses3d[j,:] = np.reshape(out,[-1,17*3] ) if not(FLAGS.predict_14) else np.reshape(out,[-1,14*3] )
"""
# Compute Euclidean distance error per joint
sqerr = (poses3d - dec_out)**2 # Squared error between prediction and expected output
dists = np.zeros( (sqerr.shape[0], n_joints) ) # Array with L2 error per joint in mm
dist_idx = 0
for k in np.arange(0, n_joints*3, 3):
# Sum across X,Y, and Z dimenstions to obtain L2 distance
dists[:,dist_idx] = np.sqrt( np.sum( sqerr[:, k:k+3], axis=1 ))
dist_idx = dist_idx + 1
all_dists.append(dists)
assert sqerr.shape[0] == FLAGS.batch_size
step_time = (time.time() - start_time) / nbatches
loss = loss / nbatches
all_dists = np.vstack( all_dists )
# Error per joint and total for all passed batches
joint_err = np.mean( all_dists, axis=0 )
total_err = np.mean( all_dists )
return total_err, joint_err, step_time, loss
def sample():
"""Get samples from a model and visualize them"""
actions = data_utils_1.define_actions( FLAGS.action )
# Load camera parameters
SUBJECT_IDS = [1,2,3,4]
#rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS)
# Load 3d data and load (or create) 2d projections
train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d= data_utils_1.read_3d_data(
actions, FLAGS.data_dir, FLAGS.camera_frame, FLAGS.predict_14 )
if FLAGS.use_sh:
train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils_1.read_2d_predictions(actions, FLAGS.data_dir)
# else:
# train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils_1.create_2d_data( actions, FLAGS.data_dir, rcams )
print( "done reading and normalizing data." )
device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1}
with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess:
# === Create the model ===
print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size))
batch_size = 128
model = create_model(sess, actions, batch_size)
print("Model loaded")
for key2d in test_set_2d.keys():
(subj, b, fname) = key2d
print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) )
# keys should be the same if 3d is in camera coordinates
key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0]))
key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d
enc_in = test_set_2d[ key2d ]
n2d, _ = enc_in.shape
dec_out = test_set_3d[ key3d ]
n3d, _ = dec_out.shape
assert n2d == n3d
# Split into about-same-size batches
enc_in = np.array_split( enc_in, n2d // batch_size )
dec_out = np.array_split( dec_out, n3d // batch_size )
all_poses_3d = []
for bidx in range( len(enc_in) ):
# Dropout probability 0 (keep probability 1) for sampling
dp = 1.0
_, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False)
# denormalize
enc_in[bidx] = data_utils_1.unNormalizeData( enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d )
dec_out[bidx] = data_utils_1.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d )
poses3d = data_utils_1.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d )
all_poses_3d.append( poses3d )
# Put all the poses together
enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] )
# Convert back to world coordinates
if FLAGS.camera_frame:
N_CAMERAS = 4
N_JOINTS_H36M = 32
# Add global position back
dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] )
# Load the appropriate camera
subj, _, sname = key3d
#cname = sname.split('.')[1] # <-- camera name
#scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} # cams of this subject
#scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname ) # index of camera used
#the_cam = scams[(subj, scam_idx+1)] # <-- the camera used
#R, T, f, c, k, p, name = the_cam
#assert name == cname
#def cam2world_centered(data_3d_camframe):
# data_3d_worldframe = cameras.camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T)
#data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3))
# subtract root translation
#return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) )
# Apply inverse rotation and translation
#dec_out = cam2world_centered(dec_out)
# poses3d = cam2world_centered(poses3d)
# Grab a random batch to visualize
enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] )
idx = np.random.permutation( enc_in.shape[0] )
enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :]
# Visualize random samples
import matplotlib.gridspec as gridspec
# 1080p = 1,920 x 1,080
fig = plt.figure( figsize=(19.2, 10.8) )
gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns
gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes.
plt.axis('off')
subplot_idx, exidx = 1, 1
nsamples = 15
for i in np.arange( nsamples ):
# Plot 2d pose
ax1 = plt.subplot(gs1[subplot_idx-1])
p2d = enc_in[exidx,:]
viz_1.show2Dpose( p2d, ax1 )
ax1.invert_yaxis()
# Plot 3d gt
ax2 = plt.subplot(gs1[subplot_idx], projection='3d')
p3d = dec_out[exidx,:]
viz_1.show3Dpose( p3d, ax2 )
# Plot 3d predictions
ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d')
p3d = poses3d[exidx,:]
viz_1.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" )
exidx = exidx + 1
subplot_idx = subplot_idx + 3
plt.show()
def main(_):
if FLAGS.sample:
sample()
else:
train()
if __name__ == "__main__":
tf.app.run()