Skip to content

UdayRockzz/Realtime-3D-pose-for-singleperson

Repository files navigation

Realtime-3D-pose-for-singleperson

2D Human Pose Estimation

First run the 2d pose estimator model for generating the 2D predictions

Dependencies:

•	python3

•	tensorflow 1.4.1+
   
•	opencv3, protobuf, python3-tk

git clone https://www.github.com/ildoonet/tf-openpose

cd tf-openpose

pip install -r requirements.txt

Realtime

python run_webcam.py --model=mobilenet_thin --resize=432x368 --camera=0 --output_json /path/to/directory

3D Human Pose Estimation

Dependencies:

•	H5py

•	Tensorflow 1.0 or later
    
•	Python 3

git clone https://github.com/Uday038/Realtime-3D-pose-for-singleperson.git

cd Realtime-3D-pose-for-singleperson

mkdir data

cd data

download human3.6M data from https://drive.google.com/drive/folders/1HBGmdk9UyeOXKgqnt82GiP43SDIWcHc- and store in data folder

cd ..

Training

python train.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm –evaluateActionWise --use_2d

Generating 3D predictions from 2D predictions

python pose3D_normal.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise --use_sh --epochs 200 --load 4874200 --pose_estimation_json /path/to/json_directory

Realtime

Python pose3D_realtime.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise --use_sh --epochs 200 --load 4874200 --pose_estimation_json /path/to/json_directory

Prerequisites

In order to run the model in realtime, first run the 2D pose estimator followed by 3D pose estimation model.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages