First run the 2d pose estimator model for generating the 2D predictions
Dependencies:
• python3
• tensorflow 1.4.1+
• opencv3, protobuf, python3-tk
git clone https://www.github.com/ildoonet/tf-openpose
cd tf-openpose
pip install -r requirements.txt
python run_webcam.py --model=mobilenet_thin --resize=432x368 --camera=0 --output_json /path/to/directory
Dependencies:
• H5py
• Tensorflow 1.0 or later
• Python 3
git clone https://github.com/Uday038/Realtime-3D-pose-for-singleperson.git
cd Realtime-3D-pose-for-singleperson
mkdir data
cd data
download human3.6M data from https://drive.google.com/drive/folders/1HBGmdk9UyeOXKgqnt82GiP43SDIWcHc- and store in data folder
cd ..
python train.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm –evaluateActionWise --use_2d
python pose3D_normal.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise --use_sh --epochs 200 --load 4874200 --pose_estimation_json /path/to/json_directory
Python pose3D_realtime.py --camera_frame --residual --batch_norm --dropout 0.5 --max_norm --evaluateActionWise --use_sh --epochs 200 --load 4874200 --pose_estimation_json /path/to/json_directory
In order to run the model in realtime, first run the 2D pose estimator followed by 3D pose estimation model.