Skip to content

Commit

Permalink
A small optimization to equivalence relations (#1040)
Browse files Browse the repository at this point in the history
- Makes equivalence relations typecheck in about half the time. I also
had a look at `category-of-functors-from-small-to-large-categories`, and
I really can't find anything wrong, so I'm a bit puzzled.
- Adds a make hook for more streamlined profiling of individual modules.
  • Loading branch information
fredrik-bakke authored Feb 27, 2024
1 parent b5985b5 commit 0530723
Show file tree
Hide file tree
Showing 10 changed files with 335 additions and 293 deletions.
10 changes: 6 additions & 4 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,7 @@
"files.exclude": {
"MAlonzo/": true,
"**/MAlonzo/": true,
"_build/": true,
"**/_build/": true,
"agdaFiles": true,
"src/temp/": true
"agdaFiles": true
},

// Snippet setup
Expand Down Expand Up @@ -94,6 +91,11 @@
"editor.autoClosingBrackets": "never"
},

"[makefile]": {
"editor.insertSpaces": false,
"editor.detectIndentation": true
},

"[markdown]": {
"editor.rulers": [80],
"editor.quickSuggestions": {
Expand Down
77 changes: 59 additions & 18 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -25,24 +25,24 @@ AGDA ?= agda $(AGDAVERBOSE) $(AGDARTS)
TIME ?= time

METAFILES := \
ART.md \
CITE-THIS-LIBRARY.md \
CODINGSTYLE.md \
CONTRIBUTING.md \
CONTRIBUTORS.md \
FILE-CONVENTIONS.md \
DESIGN-PRINCIPLES.md \
GRANT-ACKNOWLEDGEMENTS.md \
HOME.md \
HOWTO-INSTALL.md \
LICENSE.md \
MIXFIX-OPERATORS.md \
MAINTAINERS.md \
README.md \
STATEMENT-OF-INCLUSION.md \
SUMMARY.md \
TEMPLATE.lagda.md \
USERS.md \
ART.md \
CITE-THIS-LIBRARY.md \
CODINGSTYLE.md \
CONTRIBUTING.md \
CONTRIBUTORS.md \
FILE-CONVENTIONS.md \
DESIGN-PRINCIPLES.md \
GRANT-ACKNOWLEDGEMENTS.md \
HOME.md \
HOWTO-INSTALL.md \
LICENSE.md \
MIXFIX-OPERATORS.md \
MAINTAINERS.md \
README.md \
STATEMENT-OF-INCLUSION.md \
SUMMARY.md \
TEMPLATE.lagda.md \
USERS.md \

.PHONY: agdaFiles
agdaFiles:
Expand Down Expand Up @@ -75,6 +75,47 @@ check: ./src/everything.lagda.md
check-profile: ./src/everything.lagda.md
${AGDA} ${AGDAPROFILEFLAGS} $?

# Base directory where Agda interface files are stored
BUILD_DIR := ./_build
# Directory for temporary files
TEMP_DIR := ./temp
# Convert module path to directory path (replace dots with slashes)
MODULE_DIR = $(subst .,/,$(MODULE))


# Default agda arguments for `profile-module`
PROFILE_MODULE_AGDA_ARGS ?= --profile=definitions
# Target for profiling the typechecking a single module
.PHONY: profile-module
profile-module:
@if [ -z "$(MODULE)" ]; then \
echo "\033[0;31mError: MODULE variable is not set.\033[0m"; \
echo "\033[0;31mUsage: make check-module MODULE=\"YourModuleName\"\033[0m"; \
exit 1; \
fi
@# Attempt to delete the interface file only if the build directory exists
@echo "\033[0;32mAttempting to delete interface file for $(MODULE)\033[0m"
@find $(BUILD_DIR) -type f -path "*/agda/src/$(MODULE_DIR).agdai" -exec rm -f {} \+ 2>/dev/null || \
echo "\033[0;31m$(BUILD_DIR) directory does not exist, skipping deletion of interface files.\033[0m"
@# Ensure the temporary directory exists
@mkdir -p $(TEMP_DIR)
@# Profile typechecking the module and capture the output in the temp directory, also display on terminal
@echo "\033[0;32mProfiling typechecking of $(MODULE)\033[0m"
@$(AGDA) $(PROFILE_MODULE_AGDA_ARGS) src/$(MODULE_DIR).lagda.md 2>&1 | tee $(TEMP_DIR)/typecheck_output.txt
@# Check for additional modules being typechecked by looking for any indented "Checking" line
@if grep -E "^\s+Checking " $(TEMP_DIR)/typecheck_output.txt > /dev/null; then \
echo "\033[0;31mOther modules were also checked. Repeating profiling after deleting interface file again.\033[0m"; \
find $(BUILD_DIR) -type f -path "*/agda/src/$(MODULE_DIR).agdai" -exec rm -f {} \+; \
$(AGDA) $(PROFILE_MODULE_AGDA_ARGS) src/$(MODULE_DIR).lagda.md; \
else \
echo "\033[0;32mOnly $(MODULE) was checked. Profiling complete.\033[0m"; \
fi

@# Cleanup
@rm -f $(TEMP_DIR)/typecheck_output.txt



agda-html: ./src/everything.lagda.md
@rm -rf ./docs/
@mkdir -p ./docs/
Expand Down
32 changes: 16 additions & 16 deletions src/finite-group-theory/abstract-quaternion-group.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -866,14 +866,14 @@ is-noncommutative-mul-Q8 :
is-noncommutative-mul-Q8 f = Eq-eq-Q8 (f i-Q8 j-Q8)

map-equiv-count-Q8 : Fin 8 Q8
map-equiv-count-Q8 (inl (inl (inl (inl (inl (inl (inl (inr star)))))))) = e-Q8
map-equiv-count-Q8 (inl (inl (inl (inl (inl (inl (inr star))))))) = -e-Q8
map-equiv-count-Q8 (inl (inl (inl (inl (inl (inr star)))))) = i-Q8
map-equiv-count-Q8 (inl (inl (inl (inl (inr star))))) = -i-Q8
map-equiv-count-Q8 (inl (inl (inl (inr star)))) = j-Q8
map-equiv-count-Q8 (inl (inl (inr star))) = -j-Q8
map-equiv-count-Q8 (inl (inr star)) = k-Q8
map-equiv-count-Q8 (inr star) = -k-Q8
map-equiv-count-Q8 (inl (inl (inl (inl (inl (inl (inl (inr _)))))))) = e-Q8
map-equiv-count-Q8 (inl (inl (inl (inl (inl (inl (inr _))))))) = -e-Q8
map-equiv-count-Q8 (inl (inl (inl (inl (inl (inr _)))))) = i-Q8
map-equiv-count-Q8 (inl (inl (inl (inl (inr _))))) = -i-Q8
map-equiv-count-Q8 (inl (inl (inl (inr _)))) = j-Q8
map-equiv-count-Q8 (inl (inl (inr _))) = -j-Q8
map-equiv-count-Q8 (inl (inr _)) = k-Q8
map-equiv-count-Q8 (inr _) = -k-Q8

map-inv-equiv-count-Q8 : Q8 Fin 8
map-inv-equiv-count-Q8 e-Q8 = inl (inl (inl (inl (inl (inl (inl (inr star)))))))
Expand All @@ -899,16 +899,16 @@ is-section-map-inv-equiv-count-Q8 -k-Q8 = refl
is-retraction-map-inv-equiv-count-Q8 :
( map-inv-equiv-count-Q8 ∘ map-equiv-count-Q8) ~ id
is-retraction-map-inv-equiv-count-Q8
(inl (inl (inl (inl (inl (inl (inl (inr star)))))))) = refl
(inl (inl (inl (inl (inl (inl (inl (inr _)))))))) = refl
is-retraction-map-inv-equiv-count-Q8
(inl (inl (inl (inl (inl (inl (inr star))))))) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inl (inl (inl (inl (inr star)))))) =
(inl (inl (inl (inl (inl (inl (inr _))))))) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inl (inl (inl (inl (inr _)))))) =
refl
is-retraction-map-inv-equiv-count-Q8 (inl (inl (inl (inl (inr star))))) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inl (inl (inr star)))) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inl (inr star))) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inr star)) = refl
is-retraction-map-inv-equiv-count-Q8 (inr star) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inl (inl (inl (inr _))))) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inl (inl (inr _)))) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inl (inr _))) = refl
is-retraction-map-inv-equiv-count-Q8 (inl (inr _)) = refl
is-retraction-map-inv-equiv-count-Q8 (inr _) = refl

is-equiv-map-equiv-count-Q8 : is-equiv map-equiv-count-Q8
is-equiv-map-equiv-count-Q8 =
Expand Down
2 changes: 2 additions & 0 deletions src/foundation/descent-coproduct-types.lagda.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
# Descent for coproduct types

```agda
{-# OPTIONS --lossy-unification #-}

module foundation.descent-coproduct-types where
```

Expand Down
184 changes: 86 additions & 98 deletions src/foundation/equivalence-relations.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -126,24 +126,26 @@ module _
is-block-partition-equivalence-relation Q =
type-Prop (is-block-prop-partition-equivalence-relation Q)

is-partition-is-equivalence-class-inhabited-subtype-equivalence-relation :
is-partition (is-equivalence-class-inhabited-subtype-equivalence-relation R)
is-partition-is-equivalence-class-inhabited-subtype-equivalence-relation x =
is-contr-equiv
( Σ ( Σ ( equivalence-class R)
( λ C is-in-equivalence-class R C x))
( λ t is-inhabited-subtype (subtype-equivalence-class R (pr1 t))))
( ( equiv-right-swap-Σ) ∘e
( equiv-Σ
( λ Q is-in-subtype (subtype-equivalence-class R (pr1 Q)) x)
( equiv-right-swap-Σ)
( λ Q id-equiv)))
( is-contr-Σ
( is-torsorial-is-in-equivalence-class R x)
( center-total-is-in-equivalence-class R x)
( is-proof-irrelevant-is-prop
( is-prop-type-trunc-Prop)
( is-inhabited-subtype-equivalence-class R (class R x))))
abstract
is-partition-is-equivalence-class-inhabited-subtype-equivalence-relation :
is-partition
( is-equivalence-class-inhabited-subtype-equivalence-relation R)
is-partition-is-equivalence-class-inhabited-subtype-equivalence-relation x =
is-contr-equiv
( Σ ( Σ ( equivalence-class R)
( λ C is-in-equivalence-class R C x))
( λ t is-inhabited-subtype (subtype-equivalence-class R (pr1 t))))
( ( equiv-right-swap-Σ) ∘e
( equiv-Σ
( λ Q is-in-subtype (subtype-equivalence-class R (pr1 Q)) x)
( equiv-right-swap-Σ)
( λ Q id-equiv)))
( is-contr-Σ
( is-torsorial-is-in-equivalence-class R x)
( center-total-is-in-equivalence-class R x)
( is-proof-irrelevant-is-prop
( is-prop-type-trunc-Prop)
( is-inhabited-subtype-equivalence-class R (class R x))))

partition-equivalence-relation : partition l2 (l1 ⊔ l2) A
pr1 partition-equivalence-relation =
Expand Down Expand Up @@ -333,79 +335,64 @@ module _
{l1 l2 : Level} {A : UU l1} (P : partition l1 l2 A)
where

is-block-is-equivalence-class-equivalence-relation-partition :
(Q : inhabited-subtype l1 A)
is-equivalence-class
( equivalence-relation-partition P)
( subtype-inhabited-subtype Q)
is-block-partition P Q
is-block-is-equivalence-class-equivalence-relation-partition Q H =
apply-universal-property-trunc-Prop H
( subtype-partition P Q)
( λ (a , K)
tr
( is-block-partition P)
( inv
( eq-has-same-elements-inhabited-subtype Q
( inhabited-subtype-block-partition P (class-partition P a))
( λ x
logical-equivalence-reasoning
is-in-inhabited-subtype Q x
↔ Σ ( block-partition P)
( λ B
is-in-block-partition P B a ×
is-in-block-partition P B x)
by K x
↔ is-in-block-partition P (class-partition P a) x
by
iff-equiv
( ( left-unit-law-Σ-is-contr
( is-contr-block-containing-element-partition P a)
( center-block-containing-element-partition P a)) ∘e
( inv-associative-Σ
( block-partition P)
( λ B is-in-block-partition P B a)
( λ B is-in-block-partition P (pr1 B) x))))))
( is-block-class-partition P a))

is-equivalence-class-is-block-partition :
(Q : inhabited-subtype l1 A)
is-block-partition P Q
is-equivalence-class
( equivalence-relation-partition P)
( subtype-inhabited-subtype Q)
is-equivalence-class-is-block-partition Q H =
apply-universal-property-trunc-Prop
( is-inhabited-subtype-inhabited-subtype Q)
( is-equivalence-class-Prop
abstract
is-block-is-equivalence-class-equivalence-relation-partition :
(Q : inhabited-subtype l1 A)
is-equivalence-class
( equivalence-relation-partition P)
( subtype-inhabited-subtype Q))
( λ (a , q)
unit-trunc-Prop
( pair
( a)
( λ x
iff-equiv
( equivalence-reasoning
is-in-inhabited-subtype Q x
≃ is-in-block-partition P (make-block-partition P Q H) x
by
compute-is-in-block-partition P Q H x
≃ Σ ( block-partition P)
( λ B
is-in-block-partition P B a ×
is-in-block-partition P B x)
by
inv-equiv
( ( left-unit-law-Σ-is-contr
( is-contr-block-containing-element-partition P a)
( pair
( make-block-partition P Q H)
( make-is-in-block-partition P Q H a q))) ∘e
( inv-associative-Σ
( block-partition P)
( λ B is-in-block-partition P B a)
( λ B is-in-block-partition P (pr1 B) x)))))))
( subtype-inhabited-subtype Q)
is-block-partition P Q
is-block-is-equivalence-class-equivalence-relation-partition Q H =
apply-universal-property-trunc-Prop H
( subtype-partition P Q)
( λ (a , K)
tr
( is-block-partition P)
( inv
( eq-has-same-elements-inhabited-subtype Q
( inhabited-subtype-block-partition P (class-partition P a))
( λ x
( iff-equiv
( ( left-unit-law-Σ-is-contr
( is-contr-block-containing-element-partition P a)
( center-block-containing-element-partition P a)) ∘e
( inv-associative-Σ
( block-partition P)
( λ B is-in-block-partition P B a)
( λ B is-in-block-partition P (pr1 B) x)))) ∘iff
( K x))))
( is-block-class-partition P a))

abstract
is-equivalence-class-is-block-partition :
(Q : inhabited-subtype l1 A)
is-block-partition P Q
is-equivalence-class
( equivalence-relation-partition P)
( subtype-inhabited-subtype Q)
is-equivalence-class-is-block-partition Q H =
apply-universal-property-trunc-Prop
( is-inhabited-subtype-inhabited-subtype Q)
( is-equivalence-class-Prop
( equivalence-relation-partition P)
( subtype-inhabited-subtype Q))
( λ (a , q)
unit-trunc-Prop
( pair
( a)
( λ x
iff-equiv
( ( inv-equiv
( ( left-unit-law-Σ-is-contr
( is-contr-block-containing-element-partition P a)
( pair
( make-block-partition P Q H)
( make-is-in-block-partition P Q H a q))) ∘e
( inv-associative-Σ
( block-partition P)
( λ B is-in-block-partition P B a)
( λ B is-in-block-partition P (pr1 B) x)))) ∘e
( compute-is-in-block-partition P Q H x)))))

has-same-elements-partition-equivalence-relation-partition :
has-same-elements-subtype
Expand All @@ -430,14 +417,15 @@ is-retraction-equivalence-relation-partition-equivalence-relation P =
#### The map `equivalence-relation-partition` is an equivalence

```agda
is-equiv-equivalence-relation-partition :
{l : Level} {A : UU l}
is-equiv (equivalence-relation-partition {l} {l} {l} {A})
is-equiv-equivalence-relation-partition =
is-equiv-is-invertible
partition-equivalence-relation
is-section-equivalence-relation-partition-equivalence-relation
is-retraction-equivalence-relation-partition-equivalence-relation
abstract
is-equiv-equivalence-relation-partition :
{l : Level} {A : UU l}
is-equiv (equivalence-relation-partition {l} {l} {l} {A})
is-equiv-equivalence-relation-partition =
is-equiv-is-invertible
partition-equivalence-relation
is-section-equivalence-relation-partition-equivalence-relation
is-retraction-equivalence-relation-partition-equivalence-relation

equiv-equivalence-relation-partition :
{l : Level} {A : UU l} partition l l A ≃ equivalence-relation l A
Expand Down
Loading

0 comments on commit 0530723

Please sign in to comment.