Skip to content

Commit

Permalink
Merge branch 'master' into perfect-groups
Browse files Browse the repository at this point in the history
  • Loading branch information
EgbertRijke authored Oct 16, 2023
2 parents 6f5d0cc + 847ac89 commit 105a736
Show file tree
Hide file tree
Showing 59 changed files with 2,494 additions and 868 deletions.
2 changes: 1 addition & 1 deletion src/foundation-core/commuting-squares-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ coherence-square-maps :
(top : C B) (left : C A) (right : B X) (bottom : A X)
UU (l3 ⊔ l4)
coherence-square-maps top left right bottom =
(bottom ∘ left) ~ (right ∘ top)
bottom ∘ left ~ right ∘ top
```

## Properties
Expand Down
38 changes: 30 additions & 8 deletions src/foundation-core/commuting-triangles-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,15 +22,20 @@ open import foundation-core.whiskering-homotopies
A triangle of maps

```text
A ----> B
\ /
\ /
V V
X
top
A ----> B
\ /
left \ / right
V V
X
```

is said to commute if there is a homotopy between the map on the left and the
composite map.
composite map

```text
left ~ right ∘ top.
```

## Definitions

Expand All @@ -43,11 +48,11 @@ module _

coherence-triangle-maps :
(left : A X) (right : B X) (top : A B) UU (l1 ⊔ l2)
coherence-triangle-maps left right top = left ~ (right ∘ top)
coherence-triangle-maps left right top = left ~ right ∘ top

coherence-triangle-maps' :
(left : A X) (right : B X) (top : A B) UU (l1 ⊔ l2)
coherence-triangle-maps' left right top = (right ∘ top) ~ left
coherence-triangle-maps' left right top = right ∘ top ~ left
```

### Concatenation of commuting triangles of maps
Expand Down Expand Up @@ -92,3 +97,20 @@ module _
( precomp right W)
precomp-coherence-triangle-maps' H W = htpy-precomp H W
```

### Coherences of commuting triangles of maps with fixed vertices

This or its opposite should be the coherence in the characterization of
identifications of commuting triangles of maps with fixed end vertices.

```agda
coherence-htpy-triangle-maps :
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(left : A X) (right : B X) (top : A B)
(left' : A X) (right' : B X) (top' : A B)
coherence-triangle-maps left right top
coherence-triangle-maps left' right' top'
left ~ left' right ~ right' top ~ top' UU (l1 ⊔ l2)
coherence-htpy-triangle-maps left right top left' right' top' c c' L R T =
c ∙h htpy-comp-horizontal T R ~ L ∙h c'
```
18 changes: 16 additions & 2 deletions src/foundation-core/equality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ module foundation-core.equality-dependent-pair-types where
<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels

Expand Down Expand Up @@ -51,13 +52,26 @@ module _
pair-eq-Σ {s} refl = refl-Eq-Σ s

eq-pair-Σ :
{s t : Σ A B} (α : pr1 s = pr1 t)
{s t : Σ A B}
: pr1 s = pr1 t)
dependent-identification B α (pr2 s) (pr2 t) s = t
eq-pair-Σ {pair x y} {pair .x .y} refl refl = refl
eq-pair-Σ refl refl = refl

eq-pair-Σ' : {s t : Σ A B} Eq-Σ s t s = t
eq-pair-Σ' p = eq-pair-Σ (pr1 p) (pr2 p)

eq-pair-Σ-eq-pr1 :
{x y : A} {s : B x} (p : x = y) (x , s) = (y , tr B p s)
eq-pair-Σ-eq-pr1 refl = refl

eq-pair-Σ-eq-pr1' :
{x y : A} {t : B y} (p : x = y) (x , tr B (inv p) t) = (y , t)
eq-pair-Σ-eq-pr1' refl = refl

eq-pair-Σ-eq-pr2 :
{x : A} {s t : B x} s = t (x , s) = (x , t)
eq-pair-Σ-eq-pr2 {x} = ap {B = Σ A B} (pair x)

is-retraction-pair-eq-Σ :
(s t : Σ A B)
((pair-eq-Σ {s} {t}) ∘ (eq-pair-Σ' {s} {t})) ~ id {A = Eq-Σ s t}
Expand Down
2 changes: 1 addition & 1 deletion src/foundation-core/equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -402,7 +402,7 @@ abstract
abstract
is-equiv-is-section :
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A B} {g : B A}
is-equiv f (f ∘ g) ~ id is-equiv g
is-equiv f f ∘ g ~ id is-equiv g
is-equiv-is-section {B = B} {f = f} {g = g} is-equiv-f H =
is-equiv-right-factor-htpy id f g (inv-htpy H) is-equiv-f is-equiv-id
```
Expand Down
13 changes: 10 additions & 3 deletions src/foundation-core/fibers-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,9 +23,9 @@ open import foundation-core.transport-along-identifications

## Idea

Given a map `f : A → B` and a point `b : B`, the fiber of `f` at `b` is the
preimage of `f` at `b`. In other words, it consists of the elements `a : A`
equipped with an identification `Id (f a) b`.
Given a map `f : A → B` and an element `b : B`, the **fiber** of `f` at `b` is
the preimage of `f` at `b`. In other words, it consists of the elements `a : A`
equipped with an [identification](foundation-core.identity-types.md) `f a b`.

## Definition

Expand Down Expand Up @@ -403,3 +403,10 @@ reduce-Π-fiber :
(C : B UU l3) ((y : B) fiber f y C y) ≃ ((x : A) C (f x))
reduce-Π-fiber f C = reduce-Π-fiber' f (λ y z C y)
```

## Table of files about fibers of maps

The following table lists files that are about fibers of maps as a general
concept.

{{#include tables/fibers-of-maps.md}}
5 changes: 2 additions & 3 deletions src/foundation-core/homotopies.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@ module foundation-core.homotopies where
<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.commuting-squares-of-identifications
Expand Down Expand Up @@ -334,8 +333,8 @@ syntax step-homotopy-reasoning p h q = p ~ h by q

## See also

- We postulate that homotopies characterize identifications in (dependent)
function types in the file
- We postulate that homotopies characterize identifications of (dependent)
functions in the file
[`foundation-core.function-extensionality`](foundation-core.function-extensionality.md).
- The whiskering operations on homotopies are defined in the file
[`foundation.whiskering-homotopies`](foundation.whiskering-homotopies.md).
Loading

0 comments on commit 105a736

Please sign in to comment.