-
Notifications
You must be signed in to change notification settings - Fork 72
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Extensionality of globular types (#1190)
Adds a postulate to characterize equality of globular types.
- Loading branch information
1 parent
b384b14
commit 105e1ad
Showing
4 changed files
with
354 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
# Equality of globular types | ||
|
||
```agda | ||
{-# OPTIONS --guardedness #-} | ||
|
||
module structured-types.equality-globular-types where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import foundation.action-on-identifications-binary-functions | ||
open import foundation.action-on-identifications-functions | ||
open import foundation.binary-homotopies | ||
open import foundation.cartesian-product-types | ||
open import foundation.dependent-pair-types | ||
open import foundation.fundamental-theorem-of-identity-types | ||
open import foundation.identity-types | ||
open import foundation.torsorial-type-families | ||
open import foundation.univalence | ||
open import foundation.universe-levels | ||
|
||
open import foundation-core.coherently-invertible-maps | ||
open import foundation-core.equivalences | ||
open import foundation-core.retractions | ||
open import foundation-core.sections | ||
|
||
open import structured-types.globular-types | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
We postulate that [equality](foundation-core.identity-types.md) of | ||
[globular types](structured-types.globular-types.md) is characterized by | ||
equality of the 0-cells together with, coinductively, a binary family of | ||
equalities of the globular type of 1-cells over the equality of the 0-cells. | ||
This phrasing is used so that the extensionality principle is independent of | ||
[univalence](foundation.univalence.md). | ||
|
||
## Definitions | ||
|
||
### Coinductive equality of globular types | ||
|
||
```agda | ||
record | ||
Eq-Globular-Type | ||
{l1 l2 : Level} (A : Globular-Type l1 l2) (B : Globular-Type l1 l2) : | ||
UU (lsuc l1 ⊔ lsuc l2) | ||
where | ||
coinductive | ||
field | ||
eq-0-cell-Eq-Globular-Type : | ||
0-cell-Globular-Type A = 0-cell-Globular-Type B | ||
|
||
map-0-cell-Eq-Globular-Type : | ||
0-cell-Globular-Type A → 0-cell-Globular-Type B | ||
map-0-cell-Eq-Globular-Type = map-eq eq-0-cell-Eq-Globular-Type | ||
|
||
field | ||
globular-type-1-cell-Eq-Globular-Type : | ||
{x y : 0-cell-Globular-Type A} → | ||
Eq-Globular-Type | ||
( 1-cell-globular-type-Globular-Type A x y) | ||
( 1-cell-globular-type-Globular-Type B | ||
( map-0-cell-Eq-Globular-Type x) | ||
( map-0-cell-Eq-Globular-Type y)) | ||
|
||
open Eq-Globular-Type public | ||
|
||
refl-Eq-Globular-Type : | ||
{l1 l2 : Level} (A : Globular-Type l1 l2) → Eq-Globular-Type A A | ||
refl-Eq-Globular-Type A = | ||
λ where | ||
.eq-0-cell-Eq-Globular-Type → refl | ||
.globular-type-1-cell-Eq-Globular-Type {x} {y} → | ||
refl-Eq-Globular-Type (1-cell-globular-type-Globular-Type A x y) | ||
|
||
Eq-eq-Globular-Type : | ||
{l1 l2 : Level} {A B : Globular-Type l1 l2} → A = B → Eq-Globular-Type A B | ||
Eq-eq-Globular-Type {A = A} refl = refl-Eq-Globular-Type A | ||
``` | ||
|
||
### Equality of globular types as a dependent sum | ||
|
||
```agda | ||
module _ | ||
{l1 l2 : Level} | ||
where | ||
|
||
Eq-Globular-Type' : (A B : Globular-Type l1 l2) → UU (lsuc l1 ⊔ lsuc l2) | ||
Eq-Globular-Type' A B = | ||
Σ ( 0-cell-Globular-Type A = 0-cell-Globular-Type B) | ||
( λ p → | ||
(x y : 0-cell-Globular-Type A) → | ||
1-cell-globular-type-Globular-Type A x y = | ||
1-cell-globular-type-Globular-Type B (map-eq p x) (map-eq p y)) | ||
|
||
refl-Eq-Globular-Type' : (A : Globular-Type l1 l2) → Eq-Globular-Type' A A | ||
refl-Eq-Globular-Type' A = | ||
( refl , refl-binary-htpy (1-cell-globular-type-Globular-Type A)) | ||
|
||
Eq-eq-Globular-Type' : | ||
{A B : Globular-Type l1 l2} → A = B → Eq-Globular-Type' A B | ||
Eq-eq-Globular-Type' {A} refl = refl-Eq-Globular-Type' A | ||
``` | ||
|
||
## Postulate | ||
|
||
We postulate that the map `Eq-eq-Globular-Type : A = B → Eq-Globular-Type A B` | ||
is a [coherently invertible map](foundation-core.coherently-invertible-maps.md). | ||
|
||
```agda | ||
module _ | ||
{l1 l2 : Level} {A B : Globular-Type l1 l2} | ||
where | ||
|
||
postulate | ||
eq-Eq-Globular-Type : | ||
Eq-Globular-Type A B → A = B | ||
|
||
postulate | ||
is-section-eq-Eq-Globular-Type : | ||
is-section Eq-eq-Globular-Type eq-Eq-Globular-Type | ||
|
||
postulate | ||
is-retraction-eq-Eq-Globular-Type : | ||
is-retraction Eq-eq-Globular-Type eq-Eq-Globular-Type | ||
|
||
postulate | ||
coh-eq-Eq-Globular-Type : | ||
coherence-is-coherently-invertible | ||
( Eq-eq-Globular-Type) | ||
( eq-Eq-Globular-Type) | ||
( is-section-eq-Eq-Globular-Type) | ||
( is-retraction-eq-Eq-Globular-Type) | ||
``` | ||
|
||
## Further definitions | ||
|
||
```agda | ||
module _ | ||
{l1 l2 : Level} {A B : Globular-Type l1 l2} | ||
where | ||
|
||
is-coherently-invertible-Eq-eq-Globular-Type : | ||
is-coherently-invertible (Eq-eq-Globular-Type {A = A} {B}) | ||
is-coherently-invertible-Eq-eq-Globular-Type = | ||
( eq-Eq-Globular-Type , | ||
is-section-eq-Eq-Globular-Type , | ||
is-retraction-eq-Eq-Globular-Type , | ||
coh-eq-Eq-Globular-Type) | ||
|
||
is-equiv-Eq-eq-Globular-Type : is-equiv (Eq-eq-Globular-Type {A = A} {B}) | ||
is-equiv-Eq-eq-Globular-Type = | ||
is-equiv-is-invertible | ||
eq-Eq-Globular-Type | ||
is-section-eq-Eq-Globular-Type | ||
is-retraction-eq-Eq-Globular-Type | ||
|
||
is-equiv-eq-Eq-Globular-Type : | ||
is-equiv (eq-Eq-Globular-Type {A = A} {B}) | ||
is-equiv-eq-Eq-Globular-Type = | ||
is-equiv-is-invertible | ||
Eq-eq-Globular-Type | ||
is-retraction-eq-Eq-Globular-Type | ||
is-section-eq-Eq-Globular-Type | ||
|
||
equiv-Eq-eq-Globular-Type : (A = B) ≃ Eq-Globular-Type A B | ||
equiv-Eq-eq-Globular-Type = Eq-eq-Globular-Type , is-equiv-Eq-eq-Globular-Type | ||
|
||
equiv-eq-Eq-Globular-Type : Eq-Globular-Type A B ≃ (A = B) | ||
equiv-eq-Eq-Globular-Type = eq-Eq-Globular-Type , is-equiv-eq-Eq-Globular-Type | ||
|
||
is-torsorial-Eq-Globular-Type : | ||
{l1 l2 : Level} {A : Globular-Type l1 l2} → | ||
is-torsorial (Eq-Globular-Type A) | ||
is-torsorial-Eq-Globular-Type = | ||
fundamental-theorem-id' | ||
( λ _ → Eq-eq-Globular-Type) | ||
( λ _ → is-equiv-Eq-eq-Globular-Type) | ||
``` |
165 changes: 165 additions & 0 deletions
165
src/structured-types/equivalences-globular-types.lagda.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
# Equivalences between globular types | ||
|
||
```agda | ||
{-# OPTIONS --guardedness #-} | ||
|
||
module structured-types.equivalences-globular-types where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import foundation.dependent-pair-types | ||
open import foundation.equivalences | ||
open import foundation.function-types | ||
open import foundation.identity-types | ||
open import foundation.universe-levels | ||
|
||
open import structured-types.globular-types | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
An | ||
{{#concept "equivalence" Disambiguation="globular types" Agda=equiv-Globular-Type}} | ||
`f` between [globular types](structured-types.globular-types.md) `A` and `B` is | ||
an equivalence `F₀` of $0$-cells, and for every pair of $n$-cells `x` and `y`, | ||
an equivalence of $(n+1)$-cells | ||
|
||
```text | ||
Fₙ₊₁ : (𝑛+1)-Cell A x y ≃ (𝑛+1)-Cell B (Fₙ x) (Fₙ y). | ||
``` | ||
|
||
## Definitions | ||
|
||
### Equivalences between globular types | ||
|
||
```agda | ||
record | ||
equiv-Globular-Type | ||
{l1 l2 l3 l4 : Level} (A : Globular-Type l1 l2) (B : Globular-Type l3 l4) | ||
: UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
where | ||
coinductive | ||
field | ||
equiv-0-cell-equiv-Globular-Type : | ||
0-cell-Globular-Type A ≃ 0-cell-Globular-Type B | ||
|
||
map-0-cell-equiv-Globular-Type : | ||
0-cell-Globular-Type A → 0-cell-Globular-Type B | ||
map-0-cell-equiv-Globular-Type = map-equiv equiv-0-cell-equiv-Globular-Type | ||
|
||
field | ||
globular-type-1-cell-equiv-Globular-Type : | ||
{x y : 0-cell-Globular-Type A} → | ||
equiv-Globular-Type | ||
( 1-cell-globular-type-Globular-Type A x y) | ||
( 1-cell-globular-type-Globular-Type B | ||
( map-0-cell-equiv-Globular-Type x) | ||
( map-0-cell-equiv-Globular-Type y)) | ||
|
||
open equiv-Globular-Type public | ||
|
||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
{A : Globular-Type l1 l2} {B : Globular-Type l3 l4} | ||
(F : equiv-Globular-Type A B) | ||
where | ||
|
||
equiv-1-cell-equiv-Globular-Type : | ||
{x y : 0-cell-Globular-Type A} → | ||
1-cell-Globular-Type A x y ≃ | ||
1-cell-Globular-Type B | ||
( map-0-cell-equiv-Globular-Type F x) | ||
( map-0-cell-equiv-Globular-Type F y) | ||
equiv-1-cell-equiv-Globular-Type = | ||
equiv-0-cell-equiv-Globular-Type | ||
( globular-type-1-cell-equiv-Globular-Type F) | ||
|
||
map-1-cell-equiv-Globular-Type : | ||
{x y : 0-cell-Globular-Type A} → | ||
1-cell-Globular-Type A x y → | ||
1-cell-Globular-Type B | ||
( map-0-cell-equiv-Globular-Type F x) | ||
( map-0-cell-equiv-Globular-Type F y) | ||
map-1-cell-equiv-Globular-Type = | ||
map-0-cell-equiv-Globular-Type (globular-type-1-cell-equiv-Globular-Type F) | ||
|
||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
{A : Globular-Type l1 l2} {B : Globular-Type l3 l4} | ||
(F : equiv-Globular-Type A B) | ||
where | ||
|
||
equiv-2-cell-equiv-Globular-Type : | ||
{x y : 0-cell-Globular-Type A} | ||
{f g : 1-cell-Globular-Type A x y} → | ||
2-cell-Globular-Type A f g ≃ | ||
2-cell-Globular-Type B | ||
( map-1-cell-equiv-Globular-Type F f) | ||
( map-1-cell-equiv-Globular-Type F g) | ||
equiv-2-cell-equiv-Globular-Type = | ||
equiv-1-cell-equiv-Globular-Type | ||
( globular-type-1-cell-equiv-Globular-Type F) | ||
|
||
map-2-cell-equiv-Globular-Type : | ||
{x y : 0-cell-Globular-Type A} | ||
{f g : 1-cell-Globular-Type A x y} → | ||
2-cell-Globular-Type A f g → | ||
2-cell-Globular-Type B | ||
( map-1-cell-equiv-Globular-Type F f) | ||
( map-1-cell-equiv-Globular-Type F g) | ||
map-2-cell-equiv-Globular-Type = | ||
map-1-cell-equiv-Globular-Type (globular-type-1-cell-equiv-Globular-Type F) | ||
|
||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
{A : Globular-Type l1 l2} {B : Globular-Type l3 l4} | ||
(F : equiv-Globular-Type A B) | ||
where | ||
|
||
equiv-3-cell-equiv-Globular-Type : | ||
{x y : 0-cell-Globular-Type A} | ||
{f g : 1-cell-Globular-Type A x y} → | ||
{H K : 2-cell-Globular-Type A f g} → | ||
3-cell-Globular-Type A H K ≃ | ||
3-cell-Globular-Type B | ||
( map-2-cell-equiv-Globular-Type F H) | ||
( map-2-cell-equiv-Globular-Type F K) | ||
equiv-3-cell-equiv-Globular-Type = | ||
equiv-2-cell-equiv-Globular-Type | ||
( globular-type-1-cell-equiv-Globular-Type F) | ||
``` | ||
|
||
### The identity equiv on a globular type | ||
|
||
```agda | ||
id-equiv-Globular-Type : | ||
{l1 l2 : Level} (A : Globular-Type l1 l2) → equiv-Globular-Type A A | ||
id-equiv-Globular-Type A = | ||
λ where | ||
.equiv-0-cell-equiv-Globular-Type → id-equiv | ||
.globular-type-1-cell-equiv-Globular-Type {x} {y} → | ||
id-equiv-Globular-Type (1-cell-globular-type-Globular-Type A x y) | ||
``` | ||
|
||
### Composition of equivalences of globular types | ||
|
||
```agda | ||
comp-equiv-Globular-Type : | ||
{l1 l2 l3 l4 l5 l6 : Level} | ||
{A : Globular-Type l1 l2} | ||
{B : Globular-Type l3 l4} | ||
{C : Globular-Type l5 l6} → | ||
equiv-Globular-Type B C → equiv-Globular-Type A B → equiv-Globular-Type A C | ||
comp-equiv-Globular-Type g f = | ||
λ where | ||
.equiv-0-cell-equiv-Globular-Type → | ||
equiv-0-cell-equiv-Globular-Type g ∘e equiv-0-cell-equiv-Globular-Type f | ||
.globular-type-1-cell-equiv-Globular-Type → | ||
comp-equiv-Globular-Type | ||
( globular-type-1-cell-equiv-Globular-Type g) | ||
( globular-type-1-cell-equiv-Globular-Type f) | ||
``` |