Skip to content

Commit

Permalink
Refactor universal properties for various limits (#963)
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke authored Dec 10, 2023
1 parent 2101307 commit 1d782a7
Show file tree
Hide file tree
Showing 24 changed files with 362 additions and 389 deletions.
14 changes: 6 additions & 8 deletions src/foundation-core/pullbacks.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -171,8 +171,7 @@ module _

abstract
universal-property-pullback-standard-pullback :
{l : Level}
universal-property-pullback l f g (cone-standard-pullback f g)
universal-property-pullback f g (cone-standard-pullback f g)
universal-property-pullback-standard-pullback C =
is-equiv-comp
( tot (λ p map-distributive-Π-Σ))
Expand Down Expand Up @@ -208,8 +207,7 @@ module _

abstract
is-pullback-universal-property-pullback :
(c : cone f g C)
({l : Level} universal-property-pullback l f g c) is-pullback f g c
(c : cone f g C) universal-property-pullback f g c is-pullback f g c
is-pullback-universal-property-pullback c =
is-equiv-up-pullback-up-pullback
( cone-standard-pullback f g)
Expand All @@ -221,7 +219,7 @@ module _
abstract
universal-property-pullback-is-pullback :
(c : cone f g C) is-pullback f g c
{l : Level} universal-property-pullback l f g c
universal-property-pullback f g c
universal-property-pullback-is-pullback c is-pullback-c =
up-pullback-up-pullback-is-equiv
( cone-standard-pullback f g)
Expand Down Expand Up @@ -652,8 +650,8 @@ module _

abstract
universal-property-pullback-is-fiberwise-equiv :
is-fiberwise-equiv g {l : Level}
universal-property-pullback l f pr1 cone-map-Σ
is-fiberwise-equiv g
universal-property-pullback f pr1 cone-map-Σ
universal-property-pullback-is-fiberwise-equiv is-equiv-g =
universal-property-pullback-is-pullback f pr1 cone-map-Σ
( is-pullback-is-fiberwise-equiv is-equiv-g)
Expand All @@ -671,7 +669,7 @@ module _

abstract
is-fiberwise-equiv-universal-property-pullback :
( {l : Level} universal-property-pullback l f pr1 cone-map-Σ)
( universal-property-pullback f pr1 cone-map-Σ)
is-fiberwise-equiv g
is-fiberwise-equiv-universal-property-pullback up =
is-fiberwise-equiv-is-pullback
Expand Down
29 changes: 14 additions & 15 deletions src/foundation-core/universal-property-pullbacks.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,28 +31,27 @@ open import foundation-core.identity-types

```agda
module _
{l1 l2 l3 l4 : Level} (l : Level) {A : UU l1} {B : UU l2} {X : UU l3}
(f : A X) (g : B X) {C : UU l4}
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A X) (g : B X) {C : UU l4} (c : cone f g C)
where

universal-property-pullback :
(c : cone f g C) UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l)
universal-property-pullback c =
(C' : UU l) is-equiv (cone-map f g c {C'})
universal-property-pullback : UUω
universal-property-pullback =
{l : Level} (C' : UU l) is-equiv (cone-map f g c {C'})

module _
{l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A X) (g : B X) {C : UU l4} (c : cone f g C)
where

map-universal-property-pullback :
({l : Level} universal-property-pullback l f g c)
universal-property-pullback f g c
{C' : UU l5} (c' : cone f g C') C' C
map-universal-property-pullback up-c {C'} c' =
map-inv-is-equiv (up-c C') c'

compute-map-universal-property-pullback :
(up-c : {l : Level} universal-property-pullback l f g c)
(up-c : universal-property-pullback f g c)
{C' : UU l5} (c' : cone f g C')
cone-map f g c (map-universal-property-pullback up-c c') = c'
compute-map-universal-property-pullback up-c {C'} c' =
Expand Down Expand Up @@ -86,8 +85,8 @@ module _

abstract
is-equiv-up-pullback-up-pullback :
({l : Level} universal-property-pullback l f g c)
({l : Level} universal-property-pullback l f g c')
universal-property-pullback f g c
universal-property-pullback f g c'
is-equiv h
is-equiv-up-pullback-up-pullback up up' =
is-equiv-is-equiv-postcomp h
Expand All @@ -103,8 +102,8 @@ module _
abstract
up-pullback-up-pullback-is-equiv :
is-equiv h
({l : Level} universal-property-pullback l f g c)
({l : Level} universal-property-pullback l f g c')
universal-property-pullback f g c
universal-property-pullback f g c'
up-pullback-up-pullback-is-equiv is-equiv-h up D =
is-equiv-left-map-triangle
( cone-map f g c')
Expand All @@ -116,9 +115,9 @@ module _

abstract
up-pullback-is-equiv-up-pullback :
({l : Level} universal-property-pullback l f g c')
universal-property-pullback f g c'
is-equiv h
({l : Level} universal-property-pullback l f g c)
universal-property-pullback f g c
up-pullback-is-equiv-up-pullback up' is-equiv-h D =
is-equiv-right-map-triangle
( cone-map f g c')
Expand All @@ -139,7 +138,7 @@ module _

abstract
uniqueness-universal-property-pullback :
({l : Level} universal-property-pullback l f g c)
universal-property-pullback f g c
{l5 : Level} (C' : UU l5) (c' : cone f g C')
is-contr (Σ (C' C) (λ h htpy-cone f g (cone-map f g c h) c'))
uniqueness-universal-property-pullback up C' c' =
Expand Down
97 changes: 49 additions & 48 deletions src/foundation-core/universal-property-truncation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -46,33 +46,35 @@ precomp-Trunc :
(B type-Truncated-Type C) (A type-Truncated-Type C)
precomp-Trunc f C = precomp f (type-Truncated-Type C)

is-truncation :
(l : Level) {l1 l2 : Level} {k : 𝕋} {A : UU l1}
(B : Truncated-Type l2 k) (A type-Truncated-Type B)
UU (l1 ⊔ l2 ⊔ lsuc l)
is-truncation l {k = k} B f =
(C : Truncated-Type l k) is-equiv (precomp-Trunc f C)

equiv-is-truncation :
{l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k)
(f : A type-Truncated-Type B)
(H : {l : Level} is-truncation l B f)
(C : Truncated-Type l3 k)
(type-Truncated-Type B type-Truncated-Type C) ≃ (A type-Truncated-Type C)
pr1 (equiv-is-truncation B f H C) = precomp-Trunc f C
pr2 (equiv-is-truncation B f H C) = H C
module _
{l1 l2 : Level} {k : 𝕋} {A : UU l1}
(B : Truncated-Type l2 k) (f : A type-Truncated-Type B)
where

is-truncation : UUω
is-truncation =
{l : Level} (C : Truncated-Type l k) is-equiv (precomp-Trunc f C)

equiv-is-truncation :
{l3 : Level} (H : is-truncation) (C : Truncated-Type l3 k)
( type-Truncated-Type B type-Truncated-Type C) ≃
( A type-Truncated-Type C)
pr1 (equiv-is-truncation H C) = precomp-Trunc f C
pr2 (equiv-is-truncation H C) = H C
```

### The universal property of truncations

```agda
universal-property-truncation :
(l : Level) {l1 l2 : Level} {k : 𝕋} {A : UU l1}
(B : Truncated-Type l2 k) (f : A type-Truncated-Type B)
UU (lsuc l ⊔ l1 ⊔ l2)
universal-property-truncation l {k = k} {A} B f =
(C : Truncated-Type l k) (g : A type-Truncated-Type C)
is-contr (Σ (type-hom-Truncated-Type k B C) (λ h (h ∘ f) ~ g))
module _
{l1 l2 : Level} {k : 𝕋} {A : UU l1}
(B : Truncated-Type l2 k) (f : A type-Truncated-Type B)
where

universal-property-truncation : UUω
universal-property-truncation =
{l : Level} (C : Truncated-Type l k) (g : A type-Truncated-Type C)
is-contr (Σ (type-hom-Truncated-Type k B C) (λ h h ∘ f ~ g))
```

### The dependent universal property of truncations
Expand All @@ -85,12 +87,15 @@ precomp-Π-Truncated-Type :
((a : A) type-Truncated-Type (C (f a)))
precomp-Π-Truncated-Type f C h a = h (f a)

dependent-universal-property-truncation :
{l1 l2 : Level} (l : Level) {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k)
(f : A type-Truncated-Type B) UU (l1 ⊔ l2 ⊔ lsuc l)
dependent-universal-property-truncation l {k} B f =
(X : type-Truncated-Type B Truncated-Type l k)
is-equiv (precomp-Π-Truncated-Type f X)
module _
{l1 l2 : Level} {k : 𝕋} {A : UU l1}
(B : Truncated-Type l2 k) (f : A type-Truncated-Type B)
where

dependent-universal-property-truncation : UUω
dependent-universal-property-truncation =
{l : Level} (X : type-Truncated-Type B Truncated-Type l k)
is-equiv (precomp-Π-Truncated-Type f X)
```

## Properties
Expand All @@ -101,15 +106,15 @@ dependent-universal-property-truncation l {k} B f =
abstract
is-truncation-id :
{l1 : Level} {k : 𝕋} {A : UU l1} (H : is-trunc k A)
{l : Level} is-truncation l (A , H) id
is-truncation (A , H) id
is-truncation-id H B =
is-equiv-precomp-is-equiv id is-equiv-id (type-Truncated-Type B)

abstract
is-truncation-equiv :
{l1 l2 : Level} {k : 𝕋} {A : UU l1} (B : Truncated-Type l2 k)
(e : A ≃ type-Truncated-Type B)
{l : Level} is-truncation l B (map-equiv e)
is-truncation B (map-equiv e)
is-truncation-equiv B e C =
is-equiv-precomp-is-equiv
( map-equiv e)
Expand All @@ -127,8 +132,7 @@ module _

abstract
is-truncation-universal-property-truncation :
({l : Level} universal-property-truncation l B f)
({l : Level} is-truncation l B f)
universal-property-truncation B f is-truncation B f
is-truncation-universal-property-truncation H C =
is-equiv-is-contr-map
( λ g
Expand All @@ -139,25 +143,24 @@ module _

abstract
universal-property-truncation-is-truncation :
({l : Level} is-truncation l B f)
({l : Level} universal-property-truncation l B f)
is-truncation B f universal-property-truncation B f
universal-property-truncation-is-truncation H C g =
is-contr-equiv'
( Σ (type-hom-Truncated-Type k B C) (λ h (h ∘ f) = g))
( equiv-tot (λ h equiv-funext))
( is-contr-map-is-equiv (H C) g)

map-is-truncation :
({l : Level} is-truncation l B f)
({l : Level} (C : Truncated-Type l k) (g : A type-Truncated-Type C)
type-hom-Truncated-Type k B C)
is-truncation B f
{l : Level} (C : Truncated-Type l k) (g : A type-Truncated-Type C)
type-hom-Truncated-Type k B C
map-is-truncation H C g =
pr1 (center (universal-property-truncation-is-truncation H C g))

triangle-is-truncation :
(H : {l : Level} is-truncation l B f)
(H : is-truncation B f)
{l : Level} (C : Truncated-Type l k) (g : A type-Truncated-Type C)
(map-is-truncation H C g ∘ f) ~ g
map-is-truncation H C g ∘ f ~ g
triangle-is-truncation H C g =
pr2 (center (universal-property-truncation-is-truncation H C g))
```
Expand All @@ -172,8 +175,8 @@ module _

abstract
dependent-universal-property-truncation-is-truncation :
({l : Level} is-truncation l B f)
{l : Level} dependent-universal-property-truncation l B f
is-truncation B f
dependent-universal-property-truncation B f
dependent-universal-property-truncation-is-truncation H X =
is-fiberwise-equiv-is-equiv-map-Σ
( λ (h : A type-Truncated-Type B)
Expand All @@ -191,20 +194,18 @@ module _

abstract
is-truncation-dependent-universal-property-truncation :
({l : Level} dependent-universal-property-truncation l B f)
{l : Level} is-truncation l B f
is-truncation-dependent-universal-property-truncation H X =
H (λ b X)
dependent-universal-property-truncation B f is-truncation B f
is-truncation-dependent-universal-property-truncation H X = H (λ _ X)

section-is-truncation :
({l : Level} is-truncation l B f)
is-truncation B f
{l3 : Level} (C : Truncated-Type l3 k)
(h : A type-Truncated-Type C) (g : type-hom-Truncated-Type k C B)
f ~ (g ∘ h) section g
f ~ g ∘ h section g
section-is-truncation H C h g K =
map-distributive-Π-Σ
( map-inv-is-equiv
( dependent-universal-property-truncation-is-truncation H
( fiber-Truncated-Type C B g))
( λ a h a , inv (K a)))
( λ a (h a , inv (K a))))
```
2 changes: 1 addition & 1 deletion src/foundation/fibers-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ module _

abstract
universal-property-pullback-cone-fiber :
{l : Level} universal-property-pullback l f (const unit B b) cone-fiber
universal-property-pullback f (const unit B b) cone-fiber
universal-property-pullback-cone-fiber =
universal-property-pullback-is-pullback f
( const unit B b)
Expand Down
16 changes: 8 additions & 8 deletions src/foundation/propositional-truncations.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -119,26 +119,26 @@ abstract
```agda
abstract
is-propositional-truncation-trunc-Prop :
{l1 l2 : Level} (A : UU l1)
is-propositional-truncation l2 (trunc-Prop A) unit-trunc-Prop
{l : Level} (A : UU l)
is-propositional-truncation (trunc-Prop A) unit-trunc-Prop
is-propositional-truncation-trunc-Prop A =
is-propositional-truncation-extension-property
( trunc-Prop A)
( unit-trunc-Prop)
( λ {l} Q ind-trunc-Prop (λ x Q))
( λ Q ind-trunc-Prop (λ x Q))
```

### The defined propositional truncations satisfy the universal property of propositional truncations

```agda
abstract
universal-property-trunc-Prop :
{l1 l2 : Level} (A : UU l1)
universal-property-propositional-truncation l2
{l : Level} (A : UU l)
universal-property-propositional-truncation
( trunc-Prop A)
( unit-trunc-Prop)
universal-property-trunc-Prop A =
universal-property-is-propositional-truncation _
universal-property-is-propositional-truncation
( trunc-Prop A)
( unit-trunc-Prop)
( is-propositional-truncation-trunc-Prop A)
Expand Down Expand Up @@ -254,8 +254,8 @@ module _
```agda
abstract
dependent-universal-property-trunc-Prop :
{l1 : Level} {A : UU l1} {l : Level}
dependent-universal-property-propositional-truncation l
{l : Level} {A : UU l}
dependent-universal-property-propositional-truncation
( trunc-Prop A)
( unit-trunc-Prop)
dependent-universal-property-trunc-Prop {A = A} =
Expand Down
Loading

0 comments on commit 1d782a7

Please sign in to comment.