Skip to content

Commit

Permalink
manage some unfinished work
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Oct 22, 2023
1 parent d66ecbf commit 1e2b453
Show file tree
Hide file tree
Showing 7 changed files with 11 additions and 46 deletions.
10 changes: 0 additions & 10 deletions src/category-theory/opposite-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,25 +8,15 @@ module category-theory.opposite-categories where

```agda
open import category-theory.categories
open import category-theory.composition-operations-on-binary-families-of-sets
open import category-theory.isomorphisms-in-categories
open import category-theory.isomorphisms-in-precategories
open import category-theory.opposite-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.equality-dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.involutions
open import foundation.multivariable-homotopies
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ components `hom c x → hom b x` are defined by precomposition with `f`.

```agda
representable-natural-transformation-Category :
{l1 l2 : Level} (C : Category l1 l2) (b c : obj-Category C)
{l1 l2 : Level} (C : Category l1 l2) {b c : obj-Category C}
(f : hom-Category C b c)
natural-transformation-Category
( C)
Expand Down
23 changes: 10 additions & 13 deletions src/category-theory/representable-functors-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,12 +8,10 @@ module category-theory.representable-functors-precategories where

```agda
open import category-theory.functors-precategories
open import category-theory.maps-from-small-to-large-precategories
open import category-theory.maps-precategories
open import category-theory.natural-transformations-functors-precategories
open import category-theory.opposite-precategories
open import category-theory.precategories
open import category-theory.precategory-of-functors
open import category-theory.presheaf-categories

open import foundation.category-of-sets
Expand Down Expand Up @@ -149,15 +147,14 @@ module _
pr2 map-representable-functor-copresheaf-Precategory =
representable-natural-transformation-Precategory C

functor-representable-functor-copresheaf-Precategory :
functor-Precategory
( opposite-Precategory C)
( copresheaf-precategory-Large-Precategory C l2)
pr1 functor-representable-functor-copresheaf-Precategory =
representable-functor-Precategory C
pr1 (pr2 functor-representable-functor-copresheaf-Precategory) =
representable-natural-transformation-Precategory C
pr1 (pr2 (pr2 functor-representable-functor-copresheaf-Precategory)) =
{! !}
pr2 (pr2 (pr2 functor-representable-functor-copresheaf-Precategory)) = {! !}
-- functor-representable-functor-copresheaf-Precategory :
-- functor-Precategory
-- ( opposite-Precategory C)
-- ( copresheaf-precategory-Large-Precategory C l2)
-- pr1 functor-representable-functor-copresheaf-Precategory =
-- representable-functor-Precategory C
-- pr1 (pr2 functor-representable-functor-copresheaf-Precategory) =
-- representable-natural-transformation-Precategory C
-- pr1 (pr2 (pr2 functor-representable-functor-copresheaf-Precategory)) = {! !}
-- pr2 (pr2 (pr2 functor-representable-functor-copresheaf-Precategory)) = {! !}
```
3 changes: 0 additions & 3 deletions src/category-theory/yoneda-lemma-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,7 @@ open import category-theory.representable-functors-categories
open import category-theory.yoneda-lemma-precategories

open import foundation.category-of-sets
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.retractions
open import foundation.sections
open import foundation.sets
open import foundation.universe-levels
```
Expand Down
13 changes: 0 additions & 13 deletions src/category-theory/yoneda-lemma-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -136,19 +136,6 @@ module _
lemma-yoneda-Small-Large-Precategory
```

### The yoneda embedding into the large category of sets

#### Taking representable functors is a functor

```agda
module _
{l1 l2 l3 : Level} (C : Precategory l1 l2) (c : obj-Precategory C)
(F : functor-Small-Large-Precategory C Set-Large-Precategory l3)
where

map-yoneda-Small-Large-Precategory :
```

## The yoneda lemma into the small category of sets

```agda
Expand Down
1 change: 0 additions & 1 deletion src/foundation/equality-dependent-function-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@ open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.functoriality-dependent-function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.identity-types
open import foundation-core.torsorial-type-families
Expand Down
5 changes: 0 additions & 5 deletions src/foundation/multivariable-homotopies.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,8 @@ open import foundation.function-extensionality
open import foundation.iterated-dependent-product-types
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.functoriality-dependent-function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.truncated-types
open import foundation-core.truncation-levels
```

</details>
Expand Down

0 comments on commit 1e2b453

Please sign in to comment.