-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into perfect-cores
- Loading branch information
Showing
29 changed files
with
1,267 additions
and
165 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
143 changes: 143 additions & 0 deletions
143
src/category-theory/augmented-simplex-category.lagda.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
# The augmented simplex category | ||
|
||
```agda | ||
module category-theory.augmented-simplex-category where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import category-theory.precategories | ||
|
||
open import elementary-number-theory.inequality-standard-finite-types | ||
open import elementary-number-theory.natural-numbers | ||
|
||
open import foundation.dependent-pair-types | ||
open import foundation.identity-types | ||
open import foundation.sets | ||
open import foundation.universe-levels | ||
|
||
open import order-theory.order-preserving-maps-posets | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
**The augmented simplex category** is the category consisting of | ||
[finite total orders](order-theory.finite-total-orders.md) and | ||
[order-preserving maps](order-theory.order-preserving-maps-posets.md). However, | ||
we define it as the category whose objects are | ||
[natural numbers](elementary-number-theory.natural-numbers.md) and whose | ||
hom-[sets](foundation-core.sets.md) `hom n m` are order-preserving maps between | ||
the [standard finite types](univalent-combinatorics.standard-finite-types.md) | ||
`Fin n` to `Fin m` [equipped](foundation.structure.md) with the | ||
[standard ordering](elementary-number-theory.inequality-standard-finite-types.md), | ||
and then show that it is | ||
[equivalent](category-theory.equivalences-of-precategories.md) to the former. | ||
|
||
## Definition | ||
|
||
### The augmented simplex precategory | ||
|
||
```agda | ||
obj-augmented-simplex-Category : UU lzero | ||
obj-augmented-simplex-Category = ℕ | ||
|
||
hom-set-augmented-simplex-Category : | ||
obj-augmented-simplex-Category → obj-augmented-simplex-Category → Set lzero | ||
hom-set-augmented-simplex-Category n m = | ||
hom-set-Poset (Fin-Poset n) (Fin-Poset m) | ||
|
||
hom-augmented-simplex-Category : | ||
obj-augmented-simplex-Category → obj-augmented-simplex-Category → UU lzero | ||
hom-augmented-simplex-Category n m = | ||
type-Set (hom-set-augmented-simplex-Category n m) | ||
|
||
comp-hom-augmented-simplex-Category : | ||
{n m r : obj-augmented-simplex-Category} → | ||
hom-augmented-simplex-Category m r → | ||
hom-augmented-simplex-Category n m → | ||
hom-augmented-simplex-Category n r | ||
comp-hom-augmented-simplex-Category {n} {m} {r} = | ||
comp-hom-Poset (Fin-Poset n) (Fin-Poset m) (Fin-Poset r) | ||
|
||
associative-comp-hom-augmented-simplex-Category : | ||
{n m r s : obj-augmented-simplex-Category} | ||
(h : hom-augmented-simplex-Category r s) | ||
(g : hom-augmented-simplex-Category m r) | ||
(f : hom-augmented-simplex-Category n m) → | ||
( comp-hom-augmented-simplex-Category {n} {m} {s} | ||
( comp-hom-augmented-simplex-Category {m} {r} {s} h g) | ||
( f)) = | ||
( comp-hom-augmented-simplex-Category {n} {r} {s} | ||
( h) | ||
( comp-hom-augmented-simplex-Category {n} {m} {r} g f)) | ||
associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} = | ||
associative-comp-hom-Poset | ||
( Fin-Poset n) | ||
( Fin-Poset m) | ||
( Fin-Poset r) | ||
( Fin-Poset s) | ||
|
||
associative-composition-structure-augmented-simplex-Category : | ||
associative-composition-structure-Set hom-set-augmented-simplex-Category | ||
pr1 associative-composition-structure-augmented-simplex-Category {n} {m} {r} = | ||
comp-hom-augmented-simplex-Category {n} {m} {r} | ||
pr2 | ||
associative-composition-structure-augmented-simplex-Category {n} {m} {r} {s} = | ||
associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} | ||
|
||
id-hom-augmented-simplex-Category : | ||
(n : obj-augmented-simplex-Category) → hom-augmented-simplex-Category n n | ||
id-hom-augmented-simplex-Category n = id-hom-Poset (Fin-Poset n) | ||
|
||
left-unit-law-comp-hom-augmented-simplex-Category : | ||
{n m : obj-augmented-simplex-Category} | ||
(f : hom-augmented-simplex-Category n m) → | ||
comp-hom-augmented-simplex-Category {n} {m} {m} | ||
( id-hom-augmented-simplex-Category m) | ||
( f) = | ||
f | ||
left-unit-law-comp-hom-augmented-simplex-Category {n} {m} = | ||
left-unit-law-comp-hom-Poset (Fin-Poset n) (Fin-Poset m) | ||
|
||
right-unit-law-comp-hom-augmented-simplex-Category : | ||
{n m : obj-augmented-simplex-Category} | ||
(f : hom-augmented-simplex-Category n m) → | ||
comp-hom-augmented-simplex-Category {n} {n} {m} | ||
( f) | ||
( id-hom-augmented-simplex-Category n) = | ||
f | ||
right-unit-law-comp-hom-augmented-simplex-Category {n} {m} = | ||
right-unit-law-comp-hom-Poset (Fin-Poset n) (Fin-Poset m) | ||
|
||
is-unital-composition-structure-augmented-simplex-Category : | ||
is-unital-composition-structure-Set | ||
( hom-set-augmented-simplex-Category) | ||
( associative-composition-structure-augmented-simplex-Category) | ||
pr1 is-unital-composition-structure-augmented-simplex-Category = | ||
id-hom-augmented-simplex-Category | ||
pr1 (pr2 is-unital-composition-structure-augmented-simplex-Category) {n} {m} = | ||
left-unit-law-comp-hom-augmented-simplex-Category {n} {m} | ||
pr2 (pr2 is-unital-composition-structure-augmented-simplex-Category) {n} {m} = | ||
right-unit-law-comp-hom-augmented-simplex-Category {n} {m} | ||
|
||
augmented-simplex-Precategory : Precategory lzero lzero | ||
pr1 augmented-simplex-Precategory = obj-augmented-simplex-Category | ||
pr1 (pr2 augmented-simplex-Precategory) = hom-set-augmented-simplex-Category | ||
pr1 (pr2 (pr2 augmented-simplex-Precategory)) = | ||
associative-composition-structure-augmented-simplex-Category | ||
pr2 (pr2 (pr2 augmented-simplex-Precategory)) = | ||
is-unital-composition-structure-augmented-simplex-Category | ||
``` | ||
|
||
### The augmented simplex category | ||
|
||
It remains to be formalized that the augmented simplex category is univalent. | ||
|
||
## Properties | ||
|
||
### The augmented simplex category is equivalent to the category of finite total orders | ||
|
||
This remains to be formalized. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# Embedding maps between precategories | ||
|
||
```agda | ||
module category-theory.embedding-maps-precategories where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import category-theory.faithful-maps-precategories | ||
open import category-theory.functors-precategories | ||
open import category-theory.maps-precategories | ||
open import category-theory.precategories | ||
|
||
open import foundation.cartesian-product-types | ||
open import foundation.dependent-pair-types | ||
open import foundation.embeddings | ||
open import foundation.equivalences | ||
open import foundation.injective-maps | ||
open import foundation.propositions | ||
open import foundation.universe-levels | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
A [map](category-theory.maps-precategories.md) between | ||
[precategories](category-theory.precategories.md) `C` and `D` is an **embedding | ||
map** if it's an embedding on objects and | ||
[faithful](category-theory.faithful-maps-precategories.md). Hence embedding maps | ||
are maps that are embeddings on objects and hom-sets. | ||
|
||
Note that for a map of precategories to be called _an embedding_, it must also | ||
be a [functor](category-theory.functors-precategories.md). This notion is | ||
considered in | ||
[`category-theory.embeddings-precategories`](category-theory.embeddings-precategories.md). | ||
|
||
## Definition | ||
|
||
### The predicate of being an embedding map on maps between precategories | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
(C : Precategory l1 l2) | ||
(D : Precategory l3 l4) | ||
(F : map-Precategory C D) | ||
where | ||
|
||
is-embedding-map-prop-map-Precategory : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-embedding-map-prop-map-Precategory = | ||
prod-Prop | ||
( is-emb-Prop (obj-map-Precategory C D F)) | ||
( is-faithful-prop-map-Precategory C D F) | ||
|
||
is-embedding-map-map-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-embedding-map-map-Precategory = | ||
type-Prop is-embedding-map-prop-map-Precategory | ||
|
||
is-prop-is-embedding-map-map-Precategory : | ||
is-prop is-embedding-map-map-Precategory | ||
is-prop-is-embedding-map-map-Precategory = | ||
is-prop-type-Prop is-embedding-map-prop-map-Precategory | ||
``` | ||
|
||
### The type of embedding maps between precategories | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
(C : Precategory l1 l2) | ||
(D : Precategory l3 l4) | ||
where | ||
|
||
embedding-map-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
embedding-map-Precategory = | ||
Σ (map-Precategory C D) (is-embedding-map-map-Precategory C D) | ||
|
||
map-embedding-map-Precategory : | ||
embedding-map-Precategory → map-Precategory C D | ||
map-embedding-map-Precategory = pr1 | ||
|
||
is-embedding-map-embedding-map-Precategory : | ||
(e : embedding-map-Precategory) → | ||
is-embedding-map-map-Precategory C D (map-embedding-map-Precategory e) | ||
is-embedding-map-embedding-map-Precategory = pr2 | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# Embeddings between precategories | ||
|
||
```agda | ||
module category-theory.embeddings-precategories where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import category-theory.embedding-maps-precategories | ||
open import category-theory.functors-precategories | ||
open import category-theory.maps-precategories | ||
open import category-theory.precategories | ||
|
||
open import foundation.cartesian-product-types | ||
open import foundation.dependent-pair-types | ||
open import foundation.embeddings | ||
open import foundation.equivalences | ||
open import foundation.propositions | ||
open import foundation.universe-levels | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
A [functor](category-theory.functors-precategories.md) between | ||
[precategories](category-theory.precategories.md) `C` and `D` is an | ||
**embedding** if it's an embedding on objects and | ||
[faithful](category-theory.faithful-functors-precategories.md). Hence embeddings | ||
are functors that are embeddings on objects and hom-sets. | ||
|
||
## Definition | ||
|
||
### The predicate of being an embedding on maps between precategories | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
(C : Precategory l1 l2) | ||
(D : Precategory l3 l4) | ||
(F : map-Precategory C D) | ||
where | ||
|
||
is-embedding-prop-map-Precategory : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-embedding-prop-map-Precategory = | ||
prod-Prop | ||
( is-functor-prop-map-Precategory C D F) | ||
( is-embedding-map-prop-map-Precategory C D F) | ||
|
||
is-embedding-map-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-embedding-map-Precategory = | ||
type-Prop is-embedding-prop-map-Precategory | ||
|
||
is-prop-is-embedding-map-Precategory : is-prop is-embedding-map-Precategory | ||
is-prop-is-embedding-map-Precategory = | ||
is-prop-type-Prop is-embedding-prop-map-Precategory | ||
``` | ||
|
||
### The predicate of being an embedding on functors between precategories | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
(C : Precategory l1 l2) | ||
(D : Precategory l3 l4) | ||
(F : functor-Precategory C D) | ||
where | ||
|
||
is-embedding-prop-functor-Precategory : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-embedding-prop-functor-Precategory = | ||
is-embedding-map-prop-map-Precategory C D (map-functor-Precategory C D F) | ||
|
||
is-embedding-functor-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
is-embedding-functor-Precategory = | ||
type-Prop is-embedding-prop-functor-Precategory | ||
|
||
is-prop-is-embedding-functor-Precategory : | ||
is-prop is-embedding-functor-Precategory | ||
is-prop-is-embedding-functor-Precategory = | ||
is-prop-type-Prop is-embedding-prop-functor-Precategory | ||
``` | ||
|
||
### The type of embeddings between precategories | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} | ||
(C : Precategory l1 l2) | ||
(D : Precategory l3 l4) | ||
where | ||
|
||
embedding-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) | ||
embedding-Precategory = | ||
Σ (functor-Precategory C D) (is-embedding-functor-Precategory C D) | ||
|
||
functor-embedding-Precategory : | ||
embedding-Precategory → functor-Precategory C D | ||
functor-embedding-Precategory = pr1 | ||
|
||
is-embedding-embedding-Precategory : | ||
(e : embedding-Precategory) → | ||
is-embedding-functor-Precategory C D (functor-embedding-Precategory e) | ||
is-embedding-embedding-Precategory = pr2 | ||
``` |
Oops, something went wrong.