Skip to content

Commit

Permalink
Janitorial work on equivalences and embeddings (#1085)
Browse files Browse the repository at this point in the history
Extracts changes made in #1078 to parts of the library outside of
`modal-type-theory`.
  • Loading branch information
fredrik-bakke authored Mar 20, 2024
1 parent 6c950eb commit 33223e1
Show file tree
Hide file tree
Showing 18 changed files with 201 additions and 133 deletions.
6 changes: 3 additions & 3 deletions src/elementary-number-theory/powers-of-two.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -184,8 +184,8 @@ is-split-surjective-pairing-map n =
### Pairing function is injective

```agda
is-injecitve-pairing-map : is-injective pairing-map
is-injecitve-pairing-map {u , v} {u' , v'} p =
is-injective-pairing-map : is-injective pairing-map
is-injective-pairing-map {u , v} {u' , v'} p =
( eq-pair' (is-pair-expansion-unique u u' v v' q))
where
r = is-successor-is-nonzero-ℕ (is-nonzero-pair-expansion u v)
Expand All @@ -203,6 +203,6 @@ is-equiv-pairing-map : is-equiv pairing-map
is-equiv-pairing-map =
is-equiv-is-split-surjective-is-injective
pairing-map
is-injecitve-pairing-map
is-injective-pairing-map
is-split-surjective-pairing-map
```
1 change: 1 addition & 0 deletions src/foundation-core.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ open import foundation-core.negation public
open import foundation-core.operations-span-diagrams public
open import foundation-core.operations-spans public
open import foundation-core.path-split-maps public
open import foundation-core.postcomposition-dependent-functions public
open import foundation-core.postcomposition-functions public
open import foundation-core.precomposition-dependent-functions public
open import foundation-core.precomposition-functions public
Expand Down
44 changes: 22 additions & 22 deletions src/foundation-core/equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,15 +174,11 @@ module _
where

is-equiv-is-invertible' : is-invertible f is-equiv f
pr1 (pr1 (is-equiv-is-invertible' (g , H , K))) = g
pr2 (pr1 (is-equiv-is-invertible' (g , H , K))) = H
pr1 (pr2 (is-equiv-is-invertible' (g , H , K))) = g
pr2 (pr2 (is-equiv-is-invertible' (g , H , K))) = K
is-equiv-is-invertible' (g , H , K) = ((g , H) , (g , K))

is-equiv-is-invertible :
(g : B A) (H : f ∘ g ~ id) (K : g ∘ f ~ id) is-equiv f
is-equiv-is-invertible g H K =
is-equiv-is-invertible' (g , H , K)
is-equiv-is-invertible g H K = is-equiv-is-invertible' (g , H , K)

is-retraction-map-section-is-equiv :
(H : is-equiv f) is-retraction f (map-section-is-equiv H)
Expand All @@ -206,27 +202,33 @@ module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A B}
where

is-equiv-is-coherently-invertible :
is-coherently-invertible f is-equiv f
is-equiv-is-coherently-invertible H =
is-equiv-is-invertible' (is-invertible-is-coherently-invertible H)

is-equiv-is-transpose-coherently-invertible :
is-transpose-coherently-invertible f is-equiv f
is-equiv-is-transpose-coherently-invertible H =
is-equiv-is-invertible'
( is-invertible-is-transpose-coherently-invertible H)
```

The following maps are not simple constructions and should not be computed with.
Therefore, we mark them as `abstract`.

```agda
abstract
is-coherently-invertible-is-equiv :
is-equiv f is-coherently-invertible f
is-coherently-invertible-is-equiv =
is-coherently-invertible-is-invertible ∘ is-invertible-is-equiv

is-equiv-is-coherently-invertible :
is-coherently-invertible f is-equiv f
is-equiv-is-coherently-invertible H =
is-equiv-is-invertible' (is-invertible-is-coherently-invertible H)

abstract
is-transpose-coherently-invertible-is-equiv :
is-equiv f is-transpose-coherently-invertible f
is-transpose-coherently-invertible-is-equiv =
is-transpose-coherently-invertible-is-invertible ∘ is-invertible-is-equiv

is-equiv-is-transpose-coherently-invertible :
is-transpose-coherently-invertible f is-equiv f
is-equiv-is-transpose-coherently-invertible H =
is-equiv-is-invertible'
( is-invertible-is-transpose-coherently-invertible H)
```

### Structure obtained from being coherently invertible
Expand Down Expand Up @@ -421,10 +423,8 @@ module _
abstract
is-equiv-comp :
(g : B X) (h : A B) is-equiv h is-equiv g is-equiv (g ∘ h)
pr1 (is-equiv-comp g h (sh , rh) (sg , rg)) =
section-comp g h sh sg
pr2 (is-equiv-comp g h (sh , rh) (sg , rg)) =
retraction-comp g h rg rh
pr1 (is-equiv-comp g h (sh , rh) (sg , rg)) = section-comp g h sh sg
pr2 (is-equiv-comp g h (sh , rh) (sg , rg)) = retraction-comp g h rg rh

equiv-comp : B ≃ X A ≃ B A ≃ X
pr1 (equiv-comp g h) = map-equiv g ∘ map-equiv h
Expand Down Expand Up @@ -688,7 +688,7 @@ module _
pr2 (equiv-ap e x y) = is-emb-is-equiv (is-equiv-map-equiv e) x y

map-inv-equiv-ap :
(e : A ≃ B) (x y : A) (map-equiv e x = map-equiv e y) (x = y)
(e : A ≃ B) (x y : A) map-equiv e x = map-equiv e y x = y
map-inv-equiv-ap e x y = map-inv-equiv (equiv-ap e x y)
```

Expand Down
31 changes: 17 additions & 14 deletions src/foundation-core/injective-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.propositional-maps
open import foundation-core.propositions
open import foundation-core.retractions
open import foundation-core.sections
open import foundation-core.sets
```
Expand Down Expand Up @@ -106,26 +107,28 @@ module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where

abstract
is-injective-is-equiv : {f : A B} is-equiv f is-injective f
is-injective-is-equiv H {x} {y} p =
( inv (is-retraction-map-inv-is-equiv H x)) ∙
( ( ap (map-inv-is-equiv H) p) ∙
( is-retraction-map-inv-is-equiv H y))
is-injective-is-equiv : {f : A B} is-equiv f is-injective f
is-injective-is-equiv {f} H =
is-injective-retraction f (retraction-is-equiv H)

abstract
is-injective-equiv : (e : A ≃ B) is-injective (map-equiv e)
is-injective-equiv (pair f H) = is-injective-is-equiv H
is-injective-equiv : (e : A ≃ B) is-injective (map-equiv e)
is-injective-equiv e = is-injective-is-equiv (is-equiv-map-equiv e)

abstract
is-injective-map-inv-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B)
is-injective (map-inv-equiv e)
is-injective-map-inv-equiv e =
is-injective-is-equiv (is-equiv-map-inv-equiv e)
```

### Injective maps that have a section are equivalences

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where

abstract
is-injective-map-inv-equiv : (e : A ≃ B) is-injective (map-inv-equiv e)
is-injective-map-inv-equiv e =
is-injective-is-equiv (is-equiv-map-inv-equiv e)

is-equiv-is-injective : {f : A B} section f is-injective f is-equiv f
is-equiv-is-injective {f} (pair g G) H =
is-equiv-is-invertible g G (λ x H (G (f x)))
Expand Down
11 changes: 4 additions & 7 deletions src/foundation-core/invertible-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -319,15 +319,12 @@ repeat the proof to avoid cyclic dependencies.

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A B}
(H : is-invertible f) {x y : A}
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A B} (H : is-invertible f)
where

is-injective-is-invertible : f x = f y x = y
is-injective-is-invertible p =
( inv (is-retraction-map-inv-is-invertible H x)) ∙
( ( ap (map-inv-is-invertible H) p) ∙
( is-retraction-map-inv-is-invertible H y))
is-injective-is-invertible : {x y : A} f x = f y x = y
is-injective-is-invertible =
is-injective-retraction f (retraction-is-invertible H)
```

## See also
Expand Down
50 changes: 50 additions & 0 deletions src/foundation-core/postcomposition-dependent-functions.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# Postcomposition of dependent functions

```agda
module foundation-core.postcomposition-dependent-functions where
```

<details><summary>Imports</summary>

```agda
open import foundation.universe-levels

open import foundation-core.function-types
```

</details>

## Idea

Given a type `A` and a family of maps `f : {a : A} X a Y a`, the
{{#concept "postcomposition function" Disambiguation="of dependent functions by a family of maps" Agda=postcomp-Π}}
of dependent functions `(a : A) X a` by the family of maps `f`

```text
postcomp-Π A f : ((a : A) X a) ((a : A) Y a)
```

is defined by `λ h x f (h x)`.

Note that, since the definition of the family of maps `f` depends on the base
`A`, postcomposition of dependent functions does not generalize
[postcomposition of functions](foundation-core.postcomposition-functions.md) in
the same way that
[precomposition of dependent functions](foundation-core.precomposition-dependent-functions.md)
generalizes
[precomposition of functions](foundation-core.precomposition-functions.md). If
`A` can vary while keeping `f` fixed, we have necessarily reduced to the case of
[postcomposition of functions](foundation-core.postcomposition-functions.md).

## Definitions

### Postcomposition of dependent functions

```agda
module _
{l1 l2 l3 : Level} (A : UU l1) {X : A UU l2} {Y : A UU l3}
where

postcomp-Π : ({a : A} X a Y a) ((a : A) X a) ((a : A) Y a)
postcomp-Π f = f ∘_
```
3 changes: 2 additions & 1 deletion src/foundation-core/postcomposition-functions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,9 @@ module foundation-core.postcomposition-functions where
<details><summary>Imports</summary>

```agda
open import foundation.postcomposition-dependent-functions
open import foundation.universe-levels

open import foundation-core.postcomposition-dependent-functions
```

</details>
Expand Down
47 changes: 31 additions & 16 deletions src/foundation-core/retractions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,24 +75,39 @@ identifications.

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
{l1 l2 : Level} {A : UU l1} {B : UU l2} (i : A B)
(r : B A) (H : r ∘ i ~ id)
where

is-injective-has-retraction :
{x y : A} i x = i y x = y
is-injective-has-retraction {x} {y} p = inv (H x) ∙ (ap r p ∙ H y)

is-retraction-is-injective-has-retraction :
{x y : A} is-injective-has-retraction ∘ ap i {x} {y} ~ id
is-retraction-is-injective-has-retraction {x} refl = left-inv (H x)

module _
{l1 l2 : Level} {A : UU l1} {B : UU l2} (i : A B) (R : retraction i)
where

ap-retraction :
(i : A B) (r : B A) (H : r ∘ i ~ id)
(x y : A) i x = i y x = y
ap-retraction i r H x y p =
( inv (H x)) ∙ ((ap r p) ∙ (H y))

is-retraction-ap-retraction :
(i : A B) (r : B A) (H : r ∘ i ~ id)
(x y : A) ((ap-retraction i r H x y) ∘ (ap i {x} {y})) ~ id
is-retraction-ap-retraction i r H x .x refl = left-inv (H x)

retraction-ap :
(i : A B) retraction i (x y : A) retraction (ap i {x} {y})
pr1 (retraction-ap i (pair r H) x y) = ap-retraction i r H x y
pr2 (retraction-ap i (pair r H) x y) = is-retraction-ap-retraction i r H x y
is-injective-retraction :
{x y : A} i x = i y x = y
is-injective-retraction =
is-injective-has-retraction i
( map-retraction i R)
( is-retraction-map-retraction i R)

is-retraction-is-injective-retraction :
{x y : A} is-injective-retraction ∘ ap i {x} {y} ~ id
is-retraction-is-injective-retraction =
is-retraction-is-injective-has-retraction i
( map-retraction i R)
( is-retraction-map-retraction i R)

retraction-ap : {x y : A} retraction (ap i {x} {y})
pr1 retraction-ap = is-injective-retraction
pr2 retraction-ap = is-retraction-is-injective-retraction
```

### Composites of retractions are retractions
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ tr-Id-left refl p = refl
tr-Id-right :
{l : Level} {A : UU l} {a b c : A} (q : b = c) (p : a = b)
tr (a =_) q p = (p ∙ q)
tr-Id-right refl refl = refl
tr-Id-right refl p = inv right-unit
```

### Substitution law for transport
Expand Down
16 changes: 8 additions & 8 deletions src/foundation/equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -238,14 +238,14 @@ module _
Consider a commuting diagram of maps

```text
i
A ---> X
| ∧ |
| / |
f | h | g
V / V
B ---> Y
j
i
A ------> X
| ∧ |
f | / | g
| h |
/
B ------> Y.
j
```

The **6-for-2 property of equivalences** asserts that if `i` and `j` are
Expand Down
12 changes: 6 additions & 6 deletions src/foundation/functoriality-cartesian-product-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -224,9 +224,9 @@ module _
(f : A C) (g : B D)
where

is-equiv-left-factor-is-equiv-map-product-is-inhabited-right-factor' :
(d : D) is-equiv (map-product f g) is-equiv f
is-equiv-left-factor-is-equiv-map-product-is-inhabited-right-factor'
is-equiv-left-factor-is-equiv-map-product' :
D is-equiv (map-product f g) is-equiv f
is-equiv-left-factor-is-equiv-map-product'
d is-equiv-fg =
is-equiv-is-contr-map
( λ x
Expand All @@ -239,9 +239,9 @@ module _
( is-equiv-map-compute-fiber-map-product f g (x , d))
( is-contr-map-is-equiv is-equiv-fg (x , d))))

is-equiv-right-factor-is-equiv-map-product-is-inhabited-left-factor' :
(c : C) is-equiv (map-product f g) is-equiv g
is-equiv-right-factor-is-equiv-map-product-is-inhabited-left-factor'
is-equiv-right-factor-is-equiv-map-product' :
C is-equiv (map-product f g) is-equiv g
is-equiv-right-factor-is-equiv-map-product'
c is-equiv-fg =
is-equiv-is-contr-map
( λ y
Expand Down
10 changes: 5 additions & 5 deletions src/foundation/mere-embeddings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,12 +67,12 @@ transitive-leq-Large-Preorder mere-emb-Large-Preorder X Y Z =
```agda
antisymmetric-mere-emb :
{l1 l2 : Level} {X : UU l1} {Y : UU l2}
(LEM (l1 ⊔ l2)) mere-emb X Y mere-emb Y X mere-equiv X Y
LEM (l1 ⊔ l2) mere-emb X Y mere-emb Y X mere-equiv X Y
antisymmetric-mere-emb lem f g =
apply-universal-property-trunc-Prop f
(mere-equiv-Prop _ _)
λ f'
( mere-equiv-Prop _ _)
( λ f'
apply-universal-property-trunc-Prop g
(mere-equiv-Prop _ _)
λ g' unit-trunc-Prop (Cantor-Schröder-Bernstein-Escardó lem f' g')
( mere-equiv-Prop _ _)
( λ g' unit-trunc-Prop (Cantor-Schröder-Bernstein-Escardó lem f' g')))
```
Loading

0 comments on commit 33223e1

Please sign in to comment.