Skip to content

Commit

Permalink
addressing wrong Agda field in concept macro
Browse files Browse the repository at this point in the history
  • Loading branch information
EgbertRijke committed Feb 6, 2024
1 parent 22aa216 commit 3757f61
Showing 1 changed file with 9 additions and 9 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ open import orthogonal-factorization-systems.pullback-hom
## Idea

A
{{#concept "lifting structure" Disambiguation="commuting square of maps" Agda=lifting-square}}
{{#concept "lifting structure" Disambiguation="commuting square of maps" Agda=lifting-structure-square}}
of a commuting square

```text
Expand Down Expand Up @@ -137,41 +137,41 @@ module _
is-diagonal-lift-square f g α (diagonal-map-lifting-structure-square l)
is-lifting-diagonal-map-lifting-structure-square = pr2

is-extension-lifting-structure-square :
is-extension-diagonal-map-lifting-structure-square :
(l : lifting-structure-square)
is-extension f
( map-domain-hom-arrow f g α)
( diagonal-map-lifting-structure-square l)
is-extension-lifting-structure-square = pr1 ∘ pr2
is-extension-diagonal-map-lifting-structure-square = pr1 ∘ pr2

extension-lifting-structure-square :
lifting-structure-square extension f (map-domain-hom-arrow f g α)
pr1 (extension-lifting-structure-square L) =
diagonal-map-lifting-structure-square L
pr2 (extension-lifting-structure-square L) =
is-extension-lifting-structure-square L
is-extension-diagonal-map-lifting-structure-square L

is-lift-lifting-structure-square :
is-lift-diagonal-map-lifting-structure-square :
(l : lifting-structure-square)
is-lift g
( map-codomain-hom-arrow f g α)
( diagonal-map-lifting-structure-square l)
is-lift-lifting-structure-square = pr1 ∘ (pr2 ∘ pr2)
is-lift-diagonal-map-lifting-structure-square = pr1 ∘ (pr2 ∘ pr2)

lift-lifting-structure-square :
lifting-structure-square lift g (map-codomain-hom-arrow f g α)
pr1 (lift-lifting-structure-square L) =
diagonal-map-lifting-structure-square L
pr2 (lift-lifting-structure-square L) =
is-lift-lifting-structure-square L
is-lift-diagonal-map-lifting-structure-square L

coherence-lifting-structure-square :
(l : lifting-structure-square)
coherence-square-homotopies
( is-lift-lifting-structure-square l ·r f)
( is-lift-diagonal-map-lifting-structure-square l ·r f)
( coh-hom-arrow f g α)
( coh-pullback-hom f g (diagonal-map-lifting-structure-square l))
( g ·l is-extension-lifting-structure-square l)
( g ·l is-extension-diagonal-map-lifting-structure-square l)
coherence-lifting-structure-square = pr2 ∘ (pr2 ∘ pr2)
```

Expand Down

0 comments on commit 3757f61

Please sign in to comment.