-
Notifications
You must be signed in to change notification settings - Fork 72
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Strict inequality in standard finite types (#1219)
Some basic definitions and lemmas. Note: the lemmas are proven in this funny way because using a `with` abstraction wasn't reducing the terms as it should in the branches.
- Loading branch information
1 parent
d20dc8f
commit 4514edb
Showing
3 changed files
with
225 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
183 changes: 183 additions & 0 deletions
183
src/elementary-number-theory/strict-inequality-standard-finite-types.lagda.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
# Strict inequality on the standard finite types | ||
|
||
```agda | ||
module elementary-number-theory.strict-inequality-standard-finite-types where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import elementary-number-theory.inequality-natural-numbers | ||
open import elementary-number-theory.natural-numbers | ||
|
||
open import foundation.action-on-identifications-functions | ||
open import foundation.coproduct-types | ||
open import foundation.empty-types | ||
open import foundation.function-types | ||
open import foundation.identity-types | ||
open import foundation.propositions | ||
open import foundation.transport-along-identifications | ||
open import foundation.unit-type | ||
open import foundation.universe-levels | ||
|
||
open import univalent-combinatorics.standard-finite-types | ||
``` | ||
|
||
</details> | ||
|
||
## Definitions | ||
|
||
### The strict inequality relation on the standard finite types | ||
|
||
```agda | ||
le-Fin-Prop : (k : ℕ) → Fin k → Fin k → Prop lzero | ||
le-Fin-Prop (succ-ℕ k) (inl x) (inl y) = le-Fin-Prop k x y | ||
le-Fin-Prop (succ-ℕ k) (inl x) (inr star) = unit-Prop | ||
le-Fin-Prop (succ-ℕ k) (inr star) y = empty-Prop | ||
|
||
le-Fin : (k : ℕ) → Fin k → Fin k → UU lzero | ||
le-Fin k x y = type-Prop (le-Fin-Prop k x y) | ||
|
||
is-prop-le-Fin : | ||
(k : ℕ) (x y : Fin k) → is-prop (le-Fin k x y) | ||
is-prop-le-Fin k x y = is-prop-type-Prop (le-Fin-Prop k x y) | ||
``` | ||
|
||
### The predicate on maps between standard finite types of preserving strict inequality | ||
|
||
```agda | ||
preserves-le-Fin : (n m : ℕ) → (Fin n → Fin m) → UU lzero | ||
preserves-le-Fin n m f = | ||
(a b : Fin n) → | ||
le-Fin n a b → | ||
le-Fin m (f a) (f b) | ||
|
||
is-prop-preserves-le-Fin : | ||
(n m : ℕ) (f : Fin n → Fin m) → | ||
is-prop (preserves-le-Fin n m f) | ||
is-prop-preserves-le-Fin n m f = | ||
is-prop-Π λ a → | ||
is-prop-Π λ b → | ||
is-prop-Π λ p → | ||
is-prop-le-Fin m (f a) (f b) | ||
``` | ||
|
||
### A map `Fin (succ-ℕ m) → Fin (succ-ℕ n)` preserving strict inequality restricts to a map `Fin m → Fin n` | ||
|
||
#### The induced map obtained by restricting | ||
|
||
```agda | ||
restriction-preserves-le-Fin' : | ||
(m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → | ||
(preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → | ||
(x : Fin m) → (y : Fin (succ-ℕ n)) → | ||
(f (inl x) = y) → Fin n | ||
restriction-preserves-le-Fin' (succ-ℕ m) n f pf x (inl y) p = y | ||
restriction-preserves-le-Fin' (succ-ℕ m) n f pf x (inr y) p = | ||
ex-falso | ||
( tr (λ - → le-Fin (succ-ℕ n) - (f (inr star))) p | ||
( pf (inl x) (inr star) star)) | ||
|
||
restriction-preserves-le-Fin : | ||
(m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → | ||
(preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → | ||
Fin m → Fin n | ||
restriction-preserves-le-Fin m n f pf x = | ||
restriction-preserves-le-Fin' m n f pf x (f (inl x)) refl | ||
``` | ||
|
||
#### The induced map is indeed a restriction | ||
|
||
```agda | ||
inl-restriction-preserves-le-Fin' : | ||
(m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → | ||
(pf : preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → | ||
(x : Fin m) → | ||
(rx : Fin (succ-ℕ n)) → | ||
(px : f (inl x) = rx) → | ||
inl-Fin n (restriction-preserves-le-Fin' m n f pf x rx px) = f (inl-Fin m x) | ||
inl-restriction-preserves-le-Fin' (succ-ℕ m) n f pf x (inl a) px = inv px | ||
inl-restriction-preserves-le-Fin' (succ-ℕ m) n f pf x (inr a) px = | ||
ex-falso | ||
( tr (λ - → le-Fin (succ-ℕ n) - (f (inr star))) px | ||
( pf (inl x) (inr star) star)) | ||
|
||
inl-restriction-preserves-le-Fin : | ||
(m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → | ||
(pf : preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → | ||
(x : Fin m) → | ||
inl-Fin n (restriction-preserves-le-Fin m n f pf x) = f (inl-Fin m x) | ||
inl-restriction-preserves-le-Fin m n f pf x = | ||
inl-restriction-preserves-le-Fin' m n f pf x (f (inl x)) refl | ||
``` | ||
|
||
#### The induced map preserves strict inequality | ||
|
||
```agda | ||
preserves-le-restriction-preserves-le-Fin' : | ||
(m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → | ||
(pf : preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → | ||
( a : Fin m) | ||
( b : Fin m) → | ||
( ra : Fin (succ-ℕ n)) → | ||
( pa : f (inl a) = ra) → | ||
( rb : Fin (succ-ℕ n)) → | ||
( pb : f (inl b) = rb) → | ||
le-Fin m a b → | ||
le-Fin n | ||
(restriction-preserves-le-Fin' m n f pf a ra pa) | ||
(restriction-preserves-le-Fin' m n f pf b rb pb) | ||
preserves-le-restriction-preserves-le-Fin' | ||
(succ-ℕ m) n f pf a b (inl x) pa (inl y) pb H = | ||
tr (le-Fin (succ-ℕ n) (inl x)) pb | ||
( tr (λ - → le-Fin (succ-ℕ n) - (f (inl b))) pa | ||
( pf (inl a) (inl b) H)) | ||
preserves-le-restriction-preserves-le-Fin' | ||
(succ-ℕ m) n f pf a b (inl x) pa (inr y) pb H = | ||
ex-falso | ||
( tr (λ - → le-Fin (succ-ℕ n) - (f (inr star))) pb | ||
( pf (inl b) (inr star) star)) | ||
preserves-le-restriction-preserves-le-Fin' | ||
(succ-ℕ m) n f pf a b (inr x) pa y pb H = | ||
ex-falso | ||
( tr (λ - → le-Fin (succ-ℕ n) - (f (inr star))) pa | ||
( pf (inl a) (inr star) star)) | ||
|
||
preserves-le-restriction-preserves-le-Fin : | ||
(m n : ℕ) (f : Fin (succ-ℕ m) → Fin (succ-ℕ n)) → | ||
(pf : preserves-le-Fin (succ-ℕ m) (succ-ℕ n) f) → | ||
preserves-le-Fin m n (restriction-preserves-le-Fin m n f pf) | ||
preserves-le-restriction-preserves-le-Fin m n f pf a b H = | ||
preserves-le-restriction-preserves-le-Fin' m n f pf a b | ||
( f (inl a)) refl (f (inl b)) refl H | ||
``` | ||
|
||
### A strict inequality preserving map implies an inequality of cardinalities | ||
|
||
```agda | ||
leq-preserves-le-Fin : | ||
(m n : ℕ) → (f : Fin m → Fin n) → | ||
preserves-le-Fin m n f → leq-ℕ m n | ||
leq-preserves-le-Fin 0 0 f pf = star | ||
leq-preserves-le-Fin 0 (succ-ℕ n) f pf = star | ||
leq-preserves-le-Fin (succ-ℕ m) 0 f pf = f (inr star) | ||
leq-preserves-le-Fin (succ-ℕ 0) (succ-ℕ n) f pf = star | ||
leq-preserves-le-Fin (succ-ℕ (succ-ℕ m)) (succ-ℕ n) f pf = | ||
leq-preserves-le-Fin (succ-ℕ m) n | ||
( restriction-preserves-le-Fin (succ-ℕ m) n f pf) | ||
( preserves-le-restriction-preserves-le-Fin (succ-ℕ m) n f pf) | ||
``` | ||
|
||
### Composition of strict inequality preserving maps | ||
|
||
```agda | ||
comp-preserves-le-Fin : | ||
(m n o : ℕ) | ||
(g : Fin n → Fin o) | ||
(f : Fin m → Fin n) → | ||
preserves-le-Fin m n f → | ||
preserves-le-Fin n o g → | ||
preserves-le-Fin m o (g ∘ f) | ||
comp-preserves-le-Fin m n o g f pf pg a b H = | ||
pg (f a) (f b) (pf a b H) | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters