Skip to content

Commit

Permalink
complements-isolated-elements*
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Oct 9, 2023
1 parent ed1c2ad commit 49a2643
Show file tree
Hide file tree
Showing 8 changed files with 51 additions and 50 deletions.
6 changes: 3 additions & 3 deletions src/finite-group-theory/concrete-quaternion-group.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ equiv-face-cube :
( map-axis-equiv-cube (succ-ℕ k) X Y e d a))
equiv-face-cube k X Y e d a =
pair
( equiv-complement-point-UU-Fin k
( equiv-complement-element-UU-Fin k
( pair (dim-cube-UU-Fin (succ-ℕ k) X) d)
( pair
( dim-cube-UU-Fin (succ-ℕ k) Y)
Expand All @@ -48,7 +48,7 @@ equiv-face-cube k X Y e d a =
( equiv-tr
( axis-cube (succ-ℕ k) Y)
( inv
( natural-inclusion-equiv-complement-isolated-point
( natural-inclusion-equiv-complement-isolated-element
( dim-equiv-cube (succ-ℕ k) X Y e)
( pair d
( λ z
Expand All @@ -68,7 +68,7 @@ equiv-face-cube k X Y e d a =
( refl)
( d')))) ∘e
( axis-equiv-cube (succ-ℕ k) X Y e
( inclusion-complement-point-UU-Fin k
( inclusion-complement-element-UU-Fin k
( pair (dim-cube-UU-Fin (succ-ℕ k) X) d) d')))

cube-with-labeled-faces :
Expand Down
7 changes: 4 additions & 3 deletions src/foundation/isolated-elements.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ module _
is-isolated-isolated-element = pr2 x
```

### Complements of isolated points
### Complements of isolated elements

```agda
complement-isolated-element :
Expand Down Expand Up @@ -162,7 +162,8 @@ module _

is-contr-total-Eq-isolated-element :
(d : is-isolated a) is-contr (Σ A (Eq-isolated-element d))
pr1 (is-contr-total-Eq-isolated-element d) = center-total-Eq-isolated-element d
pr1 (is-contr-total-Eq-isolated-element d) =
center-total-Eq-isolated-element d
pr2 (is-contr-total-Eq-isolated-element d) =
contraction-total-Eq-isolated-element d

Expand Down Expand Up @@ -280,7 +281,7 @@ module _
is-decidable-emb-point-isolated-element
```

### Types with isolated points can be equipped with a Maybe-structure
### Types with isolated elements can be equipped with a Maybe-structure

```agda
map-maybe-structure-isolated-element :
Expand Down
4 changes: 2 additions & 2 deletions src/foundation/products-unordered-tuples-of-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,14 +53,14 @@ equiv-pr-product-unordered-tuple-types :
equiv-pr-product-unordered-tuple-types n A i =
( equiv-Π
( element-unordered-tuple (succ-ℕ n) A)
( equiv-maybe-structure-point-UU-Fin n
( equiv-maybe-structure-element-UU-Fin n
( type-unordered-tuple-UU-Fin (succ-ℕ n) A) i)
( λ x id-equiv)) ∘e
( inv-equiv
( equiv-dependent-universal-property-Maybe
( λ j
element-unordered-tuple (succ-ℕ n) A
( map-equiv (equiv-maybe-structure-point-UU-Fin n
( map-equiv (equiv-maybe-structure-element-UU-Fin n
( type-unordered-tuple-UU-Fin (succ-ℕ n) A) i)
( j)))))

Expand Down
6 changes: 3 additions & 3 deletions src/foundation/unordered-tuples.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ module _

type-complement-point-unordered-tuple-UU-Fin : UU-Fin lzero n
type-complement-point-unordered-tuple-UU-Fin =
complement-point-UU-Fin n
complement-element-UU-Fin n
( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) t) i)

type-complement-point-unordered-tuple : UU lzero
Expand All @@ -94,13 +94,13 @@ module _
inclusion-complement-point-unordered-tuple :
type-complement-point-unordered-tuple type-unordered-tuple (succ-ℕ n) t
inclusion-complement-point-unordered-tuple =
inclusion-complement-point-UU-Fin n
inclusion-complement-element-UU-Fin n
( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) t) i)

unordered-tuple-complement-point-type-unordered-tuple :
unordered-tuple n A
pr1 unordered-tuple-complement-point-type-unordered-tuple =
complement-point-UU-Fin n
complement-element-UU-Fin n
( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) t) i)
pr2 unordered-tuple-complement-point-type-unordered-tuple =
( element-unordered-tuple (succ-ℕ n) t) ∘
Expand Down
2 changes: 1 addition & 1 deletion src/univalent-combinatorics.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ open import univalent-combinatorics.binomial-types public
open import univalent-combinatorics.bracelets public
open import univalent-combinatorics.cartesian-product-types public
open import univalent-combinatorics.classical-finite-types public
open import univalent-combinatorics.complements-isolated-points public
open import univalent-combinatorics.complements-isolated-elements public
open import univalent-combinatorics.coproduct-types public
open import univalent-combinatorics.counting public
open import univalent-combinatorics.counting-decidable-subtypes public
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Complements of isolated points of finite types
# Complements of isolated elements of finite types

```agda
module univalent-combinatorics.complements-isolated-elements where
Expand Down Expand Up @@ -26,89 +26,89 @@ open import univalent-combinatorics.finite-types

## Idea

For any point `x` in a [finite type](univalent-combinatorics.finite-types.md)
For any element `x` in a [finite type](univalent-combinatorics.finite-types.md)
`X` of [cardinality](set-theory.cardinalities.md) `n+1`, we can construct its
**complement**, which is a type of cardinality `n`.

## Definition

### The complement of a point in a k-element type of arbitrary universe level
### The complement of a element in a `k`-element type of arbitrary universe level

```agda
isolated-point-UU-Fin :
isolated-element-UU-Fin :
{l : Level} (k : ℕ) (X : UU-Fin l (succ-ℕ k))
type-UU-Fin (succ-ℕ k) X
isolated-point (type-UU-Fin (succ-ℕ k) X)
pr1 (isolated-point-UU-Fin k X x) = x
pr2 (isolated-point-UU-Fin k X x) =
isolated-element (type-UU-Fin (succ-ℕ k) X)
pr1 (isolated-element-UU-Fin k X x) = x
pr2 (isolated-element-UU-Fin k X x) =
has-decidable-equality-has-cardinality
( succ-ℕ k)
( has-cardinality-type-UU-Fin (succ-ℕ k) X)
( x)

type-complement-point-UU-Fin :
type-complement-element-UU-Fin :
{l1 : Level} (k : ℕ)
Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k)) UU l1
type-complement-point-UU-Fin k (X , x) =
complement-isolated-point
type-complement-element-UU-Fin k (X , x) =
complement-isolated-element
( type-UU-Fin (succ-ℕ k) X)
( isolated-point-UU-Fin k X x)
( isolated-element-UU-Fin k X x)

equiv-maybe-structure-point-UU-Fin :
equiv-maybe-structure-element-UU-Fin :
{l : Level} (k : ℕ) (X : UU-Fin l (succ-ℕ k))
(x : type-UU-Fin (succ-ℕ k) X)
Maybe (type-complement-point-UU-Fin k (pair X x)) ≃
Maybe (type-complement-element-UU-Fin k (pair X x)) ≃
type-UU-Fin (succ-ℕ k) X
equiv-maybe-structure-point-UU-Fin k X x =
equiv-maybe-structure-isolated-point
equiv-maybe-structure-element-UU-Fin k X x =
equiv-maybe-structure-isolated-element
( type-UU-Fin (succ-ℕ k) X)
( isolated-point-UU-Fin k X x)
( isolated-element-UU-Fin k X x)

has-cardinality-type-complement-point-UU-Fin :
has-cardinality-type-complement-element-UU-Fin :
{l1 : Level} (k : ℕ)
(X : Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k)))
has-cardinality k (type-complement-point-UU-Fin k X)
has-cardinality-type-complement-point-UU-Fin k (pair (pair X H) x) =
has-cardinality k (type-complement-element-UU-Fin k X)
has-cardinality-type-complement-element-UU-Fin k (pair (pair X H) x) =
apply-universal-property-trunc-Prop H
( has-cardinality-Prop k
( type-complement-point-UU-Fin k (pair (pair X H) x)))
( type-complement-element-UU-Fin k (pair (pair X H) x)))
( λ e
unit-trunc-Prop
( equiv-equiv-Maybe
( ( inv-equiv
( equiv-maybe-structure-point-UU-Fin k (pair X H) x)) ∘e
( equiv-maybe-structure-element-UU-Fin k (pair X H) x)) ∘e
( e))))

complement-point-UU-Fin :
complement-element-UU-Fin :
{l1 : Level} (k : ℕ)
Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k))
UU-Fin l1 k
pr1 (complement-point-UU-Fin k T) =
type-complement-point-UU-Fin k T
pr2 (complement-point-UU-Fin k T) =
has-cardinality-type-complement-point-UU-Fin k T
pr1 (complement-element-UU-Fin k T) =
type-complement-element-UU-Fin k T
pr2 (complement-element-UU-Fin k T) =
has-cardinality-type-complement-element-UU-Fin k T

inclusion-complement-point-UU-Fin :
inclusion-complement-element-UU-Fin :
{l1 : Level} (k : ℕ)
(X : Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k)))
type-complement-point-UU-Fin k X type-UU-Fin (succ-ℕ k) (pr1 X)
inclusion-complement-point-UU-Fin k X x = pr1 x
type-complement-element-UU-Fin k X type-UU-Fin (succ-ℕ k) (pr1 X)
inclusion-complement-element-UU-Fin k X x = pr1 x
```

### The action of equivalences on complements of isolated points

```agda
equiv-complement-point-UU-Fin :
equiv-complement-element-UU-Fin :
{l1 : Level} (k : ℕ)
(X Y : Σ (UU-Fin l1 (succ-ℕ k)) (type-UU-Fin (succ-ℕ k)))
(e : equiv-UU-Fin (succ-ℕ k) (pr1 X) (pr1 Y))
(p : Id (map-equiv e (pr2 X)) (pr2 Y))
equiv-UU-Fin k
( complement-point-UU-Fin k X)
( complement-point-UU-Fin k Y)
equiv-complement-point-UU-Fin
( complement-element-UU-Fin k X)
( complement-element-UU-Fin k Y)
equiv-complement-element-UU-Fin
k S T e p =
equiv-complement-isolated-point e
equiv-complement-isolated-element e
( pair x (λ x' has-decidable-equality-has-cardinality (succ-ℕ k) H x x'))
( pair y (λ y' has-decidable-equality-has-cardinality (succ-ℕ k) K y y'))
( p)
Expand All @@ -121,7 +121,7 @@ equiv-complement-point-UU-Fin

## Properties

### The map from a pointed `k+1`-element type to the complement of the point is an equivalence
### The map from a pointed `k+1`-element type to the complement of the element is an equivalence

This remains to be shown.
[#744](https://github.com/UniMath/agda-unimath/issues/744)
4 changes: 2 additions & 2 deletions src/univalent-combinatorics/cubes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -106,9 +106,9 @@ face-cube :
(k : ℕ) (X : cube (succ-ℕ k)) (d : dim-cube (succ-ℕ k) X)
(a : axis-cube (succ-ℕ k) X d) cube k
pr1 (face-cube k X d a) =
complement-point-UU-Fin k (pair (dim-cube-UU-Fin (succ-ℕ k) X) d)
complement-element-UU-Fin k (pair (dim-cube-UU-Fin (succ-ℕ k) X) d)
pr2 (face-cube k X d a) d' =
axis-cube-UU-2 (succ-ℕ k) X
( inclusion-complement-point-UU-Fin k
( inclusion-complement-element-UU-Fin k
( pair (dim-cube-UU-Fin (succ-ℕ k) X) d) d')
```
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ is-π-finite-Main-Class-Latin-Hypercube-of-Order k n m =
is-finite-Π
( is-finite-Π
( is-finite-has-cardinality n
( has-cardinality-type-complement-point-UU-Fin n
( has-cardinality-type-complement-element-UU-Fin n
( pair (type-unordered-tuple-UU-Fin (succ-ℕ n) A) i)))
( λ j
is-finite-type-UU-Fin m
Expand Down

0 comments on commit 49a2643

Please sign in to comment.