Skip to content

Commit

Permalink
Abelianization (#877)
Browse files Browse the repository at this point in the history
  • Loading branch information
EgbertRijke authored Nov 24, 2023
1 parent 4b021c0 commit 4bfc70a
Show file tree
Hide file tree
Showing 266 changed files with 10,829 additions and 5,637 deletions.
21 changes: 21 additions & 0 deletions src/category-theory/full-large-subcategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ module category-theory.full-large-subcategories where

```agda
open import category-theory.full-large-subprecategories
open import category-theory.functors-large-categories
open import category-theory.large-categories
open import category-theory.large-precategories

Expand Down Expand Up @@ -203,3 +204,23 @@ module _
large-category-Full-Large-Subcategory =
is-large-category-Full-Large-Subcategory
```

### The forgetful functor from a full large subcategory to the ambient large category

```agda
module _
: Level Level} {β : Level Level Level} {γ : Level Level}
(C : Large-Category α β)
(P : Full-Large-Subcategory γ C)
where

forgetful-functor-Full-Large-Subcategory :
functor-Large-Category
( λ l l)
( large-category-Full-Large-Subcategory C P)
( C)
forgetful-functor-Full-Large-Subcategory =
forgetful-functor-Full-Large-Subprecategory
( large-precategory-Large-Category C)
( P)
```
30 changes: 30 additions & 0 deletions src/category-theory/full-large-subprecategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,13 @@ module category-theory.full-large-subprecategories where
<details><summary>Imports</summary>

```agda
open import category-theory.functors-large-precategories
open import category-theory.isomorphisms-in-large-categories
open import category-theory.isomorphisms-in-large-precategories
open import category-theory.large-categories
open import category-theory.large-precategories

open import foundation.function-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.identity-types
open import foundation.propositions
Expand Down Expand Up @@ -190,6 +192,34 @@ module _
iso-eq-Large-Precategory large-precategory-Full-Large-Subprecategory
```

### The forgetful functor from a full large subprecategory to the ambient large precategory

```agda
module _
: Level Level} {β : Level Level Level} {γ : Level Level}
(C : Large-Precategory α β)
(P : Full-Large-Subprecategory γ C)
where

forgetful-functor-Full-Large-Subprecategory :
functor-Large-Precategory
( λ l l)
( large-precategory-Full-Large-Subprecategory C P)
( C)
obj-functor-Large-Precategory
forgetful-functor-Full-Large-Subprecategory =
inclusion-subtype P
hom-functor-Large-Precategory
forgetful-functor-Full-Large-Subprecategory =
id
preserves-comp-functor-Large-Precategory
forgetful-functor-Full-Large-Subprecategory g f =
refl
preserves-id-functor-Large-Precategory
forgetful-functor-Full-Large-Subprecategory =
refl
```

## Properties

### A full large subprecategory of a large category is a large category
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ module _
{l2 l3 : Level}
{X : obj-Large-Precategory C l2} {Y : obj-Large-Precategory C l3}
hom-Large-Precategory C X Y
type-hom-Set
hom-Set
( obj-representable-functor-Large-Precategory X)
( obj-representable-functor-Large-Precategory Y)
hom-representable-functor-Large-Precategory =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -79,14 +79,14 @@ module _
is-closed-under-addition-full-ideal-Commutative-Ring :
is-closed-under-addition-subset-Commutative-Ring A
subset-full-ideal-Commutative-Ring
is-closed-under-addition-full-ideal-Commutative-Ring =
is-closed-under-addition-full-ideal-Ring (ring-Commutative-Ring A)
is-closed-under-addition-full-ideal-Commutative-Ring {x} {y} =
is-closed-under-addition-full-ideal-Ring (ring-Commutative-Ring A) {x} {y}

is-closed-under-negatives-full-ideal-Commutative-Ring :
is-closed-under-negatives-subset-Commutative-Ring A
subset-full-ideal-Commutative-Ring
is-closed-under-negatives-full-ideal-Commutative-Ring =
is-closed-under-negatives-full-ideal-Ring (ring-Commutative-Ring A)
is-closed-under-negatives-full-ideal-Commutative-Ring {x} =
is-closed-under-negatives-full-ideal-Ring (ring-Commutative-Ring A) {x}

is-additive-subgroup-full-ideal-Commutative-Ring :
is-additive-subgroup-subset-Commutative-Ring A
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -182,15 +182,17 @@ module _
inclusion-group-of-units-Ring (ring-Commutative-Ring A)

preserves-mul-inclusion-group-of-units-Commutative-Ring :
(x y : type-group-of-units-Commutative-Ring)
{x y : type-group-of-units-Commutative-Ring}
inclusion-group-of-units-Commutative-Ring
( mul-group-of-units-Commutative-Ring x y) =
mul-Commutative-Ring A
( inclusion-group-of-units-Commutative-Ring x)
( inclusion-group-of-units-Commutative-Ring y)
preserves-mul-inclusion-group-of-units-Commutative-Ring =
preserves-mul-inclusion-group-of-units-Commutative-Ring {x} {y} =
preserves-mul-inclusion-group-of-units-Ring
( ring-Commutative-Ring A)
{ x}
{ y}

hom-inclusion-group-of-units-Commutative-Ring :
hom-Monoid monoid-group-of-units-Commutative-Ring
Expand Down Expand Up @@ -221,7 +223,7 @@ module _
( f)

preserves-mul-hom-group-of-units-hom-Commutative-Ring :
(x y : type-group-of-units-Commutative-Ring A)
{x y : type-group-of-units-Commutative-Ring A}
map-group-of-units-hom-Commutative-Ring
( mul-group-of-units-Commutative-Ring A x y) =
mul-group-of-units-Commutative-Ring B
Expand Down Expand Up @@ -254,7 +256,7 @@ module _
( f)

preserves-inv-hom-group-of-units-hom-Commutative-Ring :
(x : type-group-of-units-Commutative-Ring A)
{x : type-group-of-units-Commutative-Ring A}
map-group-of-units-hom-Commutative-Ring
( inv-group-of-units-Commutative-Ring A x) =
inv-group-of-units-Commutative-Ring B
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ module _
( f)

preserves-addition-hom-Commutative-Semiring :
(x y : type-Commutative-Semiring A)
{x y : type-Commutative-Semiring A}
map-hom-Commutative-Semiring (add-Commutative-Semiring A x y) =
add-Commutative-Semiring B
( map-hom-Commutative-Semiring x)
Expand All @@ -99,7 +99,7 @@ module _
( f)

preserves-mul-hom-Commutative-Semiring :
(x y : type-Commutative-Semiring A)
{x y : type-Commutative-Semiring A}
map-hom-Commutative-Semiring (mul-Commutative-Semiring A x y) =
mul-Commutative-Semiring B
( map-hom-Commutative-Semiring x)
Expand Down Expand Up @@ -157,7 +157,7 @@ module _
( semiring-Commutative-Semiring A)

preserves-mul-id-hom-Commutative-Semiring :
(x y : type-Commutative-Semiring A)
{x y : type-Commutative-Semiring A}
mul-Commutative-Semiring A x y = mul-Commutative-Semiring A x y
preserves-mul-id-hom-Commutative-Semiring =
preserves-mul-id-hom-Semiring (semiring-Commutative-Semiring A)
Expand Down Expand Up @@ -219,7 +219,7 @@ module _
( f)

preserves-mul-comp-hom-Commutative-Semiring :
(x y : type-Commutative-Semiring A)
{x y : type-Commutative-Semiring A}
map-comp-hom-Commutative-Semiring (mul-Commutative-Semiring A x y) =
mul-Commutative-Semiring C
( map-comp-hom-Commutative-Semiring x)
Expand Down
2 changes: 1 addition & 1 deletion src/commutative-algebra/ideals-commutative-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,7 @@ module _
is-in-ideal-Commutative-Ring x
is-in-ideal-Commutative-Ring (neg-Commutative-Ring R x)
is-closed-under-negatives-ideal-Commutative-Ring =
pr2 (pr2 is-additive-subgroup-ideal-Commutative-Ring) _
pr2 (pr2 is-additive-subgroup-ideal-Commutative-Ring)

is-closed-under-left-multiplication-ideal-Commutative-Ring :
is-closed-under-left-multiplication-subset-Commutative-Ring R
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -81,25 +81,25 @@ module _
is-closed-under-addition-subset-Commutative-Ring R
( subset-intersection-ideal-Commutative-Ring)
pr1
( is-closed-under-addition-intersection-ideal-Commutative-Ring x y
( is-closed-under-addition-intersection-ideal-Commutative-Ring
( H1 , H2)
( K1 , K2)) =
is-closed-under-addition-ideal-Commutative-Ring R I x y H1 K1
is-closed-under-addition-ideal-Commutative-Ring R I H1 K1
pr2
( is-closed-under-addition-intersection-ideal-Commutative-Ring x y
( is-closed-under-addition-intersection-ideal-Commutative-Ring
( H1 , H2)
( K1 , K2)) =
is-closed-under-addition-ideal-Commutative-Ring R J x y H2 K2
is-closed-under-addition-ideal-Commutative-Ring R J H2 K2

is-closed-under-negatives-intersection-ideal-Commutative-Ring :
is-closed-under-negatives-subset-Commutative-Ring R
( subset-intersection-ideal-Commutative-Ring)
pr1
( is-closed-under-negatives-intersection-ideal-Commutative-Ring x
( is-closed-under-negatives-intersection-ideal-Commutative-Ring
( H1 , H2)) =
is-closed-under-negatives-ideal-Commutative-Ring R I H1
pr2
( is-closed-under-negatives-intersection-ideal-Commutative-Ring x
( is-closed-under-negatives-intersection-ideal-Commutative-Ring
( H1 , H2)) =
is-closed-under-negatives-ideal-Commutative-Ring R J H2

Expand Down
12 changes: 6 additions & 6 deletions src/commutative-algebra/isomorphisms-commutative-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ module _
( ring-Commutative-Ring B)

preserves-add-iso-Commutative-Ring :
(f : iso-Commutative-Ring) (x y : type-Commutative-Ring A)
(f : iso-Commutative-Ring) {x y : type-Commutative-Ring A}
map-iso-Commutative-Ring f (add-Commutative-Ring A x y) =
add-Commutative-Ring B
( map-iso-Commutative-Ring f x)
Expand All @@ -183,7 +183,7 @@ module _
( ring-Commutative-Ring B)

preserves-neg-iso-Commutative-Ring :
(f : iso-Commutative-Ring) (x : type-Commutative-Ring A)
(f : iso-Commutative-Ring) {x : type-Commutative-Ring A}
map-iso-Commutative-Ring f (neg-Commutative-Ring A x) =
neg-Commutative-Ring B (map-iso-Commutative-Ring f x)
preserves-neg-iso-Commutative-Ring =
Expand All @@ -192,7 +192,7 @@ module _
( ring-Commutative-Ring B)

preserves-mul-iso-Commutative-Ring :
(f : iso-Commutative-Ring) (x y : type-Commutative-Ring A)
(f : iso-Commutative-Ring) {x y : type-Commutative-Ring A}
map-iso-Commutative-Ring f (mul-Commutative-Ring A x y) =
mul-Commutative-Ring B
( map-iso-Commutative-Ring f x)
Expand Down Expand Up @@ -243,7 +243,7 @@ module _
( ring-Commutative-Ring B)

preserves-add-inv-iso-Commutative-Ring :
(f : iso-Commutative-Ring) (x y : type-Commutative-Ring B)
(f : iso-Commutative-Ring) {x y : type-Commutative-Ring B}
map-inv-iso-Commutative-Ring f (add-Commutative-Ring B x y) =
add-Commutative-Ring A
( map-inv-iso-Commutative-Ring f x)
Expand All @@ -254,7 +254,7 @@ module _
( ring-Commutative-Ring B)

preserves-neg-inv-iso-Commutative-Ring :
(f : iso-Commutative-Ring) (x : type-Commutative-Ring B)
(f : iso-Commutative-Ring) {x : type-Commutative-Ring B}
map-inv-iso-Commutative-Ring f (neg-Commutative-Ring B x) =
neg-Commutative-Ring A (map-inv-iso-Commutative-Ring f x)
preserves-neg-inv-iso-Commutative-Ring =
Expand All @@ -263,7 +263,7 @@ module _
( ring-Commutative-Ring B)

preserves-mul-inv-iso-Commutative-Ring :
(f : iso-Commutative-Ring) (x y : type-Commutative-Ring B)
(f : iso-Commutative-Ring) {x y : type-Commutative-Ring B}
map-inv-iso-Commutative-Ring f (mul-Commutative-Ring B x y) =
mul-Commutative-Ring A
( map-inv-iso-Commutative-Ring f x)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ is-closed-under-addition-nilradical-Commutative-Ring :
{l : Level} (A : Commutative-Ring l)
is-closed-under-addition-subset-Commutative-Ring A
( subset-nilradical-Commutative-Ring A)
is-closed-under-addition-nilradical-Commutative-Ring A x y =
is-closed-under-addition-nilradical-Commutative-Ring A {x} {y} =
is-nilpotent-add-Ring
( ring-Commutative-Ring A)
( x)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@ module _
preserves-order-ideal-radical-ideal-Commutative-Ring I J H = H

ideal-radical-ideal-hom-large-poset-Commutative-Ring :
hom-set-Large-Poset
hom-Large-Poset
( λ l l)
( radical-ideal-Commutative-Ring-Large-Poset A)
( ideal-Commutative-Ring-Large-Poset A)
Expand Down
12 changes: 0 additions & 12 deletions src/commutative-algebra/products-ideals-commutative-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -227,8 +227,6 @@ module _
( product-subset-Commutative-Ring A S T)
( is-closed-under-addition-ideal-subset-Commutative-Ring A
( product-subset-Commutative-Ring A S T)
( _)
( _)
( is-closed-under-eq-ideal-subset-Commutative-Ring' A
( product-subset-Commutative-Ring A S T)
( is-closed-under-right-multiplication-ideal-Commutative-Ring A
Expand Down Expand Up @@ -276,8 +274,6 @@ module _
( product-subset-Commutative-Ring A S T)
( is-closed-under-addition-ideal-subset-Commutative-Ring A
( product-subset-Commutative-Ring A S T)
( _)
( _)
( is-closed-under-eq-ideal-subset-Commutative-Ring' A
( product-subset-Commutative-Ring A S T)
( is-closed-under-right-multiplication-ideal-Commutative-Ring A
Expand Down Expand Up @@ -329,14 +325,8 @@ module _
( product-subset-Commutative-Ring A S T)
( is-closed-under-addition-ideal-subset-Commutative-Ring A
( product-subset-Commutative-Ring A S T)
( add-Commutative-Ring A _ _)
( add-Commutative-Ring A _ _)
( is-closed-under-addition-ideal-subset-Commutative-Ring A
( product-subset-Commutative-Ring A S T)
( mul-Commutative-Ring A _ _)
( mul-Commutative-Ring A
( mul-Commutative-Ring A _ _)
( ev-formal-combination-subset-Commutative-Ring A T l))
( is-closed-under-eq-ideal-subset-Commutative-Ring' A
( product-subset-Commutative-Ring A S T)
( is-closed-under-right-multiplication-ideal-Commutative-Ring A
Expand All @@ -361,8 +351,6 @@ module _
Hs l))
( is-closed-under-addition-ideal-subset-Commutative-Ring A
( product-subset-Commutative-Ring A S T)
( _)
( _)
( right-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring
Ht k)
( backward-inclusion-preserves-product-ideal-subset-Commutative-Ring'
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ module _
is-closed-under-addition-radical-of-ideal-Commutative-Ring :
is-closed-under-addition-subset-Commutative-Ring A
( subset-radical-of-ideal-Commutative-Ring)
is-closed-under-addition-radical-of-ideal-Commutative-Ring x y H K =
is-closed-under-addition-radical-of-ideal-Commutative-Ring {x} {y} H K =
apply-universal-property-trunc-Prop H
( subset-radical-of-ideal-Commutative-Ring (add-Commutative-Ring A x y))
( λ (n , p)
Expand All @@ -117,7 +117,7 @@ module _
intro-∃
( n +ℕ m)
( is-closed-under-eq-ideal-Commutative-Ring' A I
( is-closed-under-addition-ideal-Commutative-Ring A I _ _
( is-closed-under-addition-ideal-Commutative-Ring A I
( is-closed-under-right-multiplication-ideal-Commutative-Ring
( A)
( I)
Expand All @@ -135,7 +135,7 @@ module _
is-closed-under-negatives-radical-of-ideal-Commutative-Ring :
is-closed-under-negatives-subset-Commutative-Ring A
( subset-radical-of-ideal-Commutative-Ring)
is-closed-under-negatives-radical-of-ideal-Commutative-Ring x H =
is-closed-under-negatives-radical-of-ideal-Commutative-Ring {x} H =
apply-universal-property-trunc-Prop H
( subset-radical-of-ideal-Commutative-Ring (neg-Commutative-Ring A x))
( λ (n , p)
Expand Down Expand Up @@ -238,7 +238,7 @@ module _
( H))

radical-of-ideal-hom-large-poset-Commutative-Ring :
hom-set-Large-Poset
hom-Large-Poset
( λ l l)
( ideal-Commutative-Ring-Large-Poset A)
( radical-ideal-Commutative-Ring-Large-Poset A)
Expand Down
10 changes: 5 additions & 5 deletions src/elementary-number-theory/integer-fractions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -184,11 +184,11 @@ transitive-sim-fraction-ℤ x y z s r =
( denominator-fraction-ℤ x)
( denominator-fraction-ℤ y)))))))))))))

eq-rel-sim-fraction-ℤ : Equivalence-Relation lzero fraction-ℤ
pr1 eq-rel-sim-fraction-ℤ = sim-fraction-ℤ-Prop
pr1 (pr2 eq-rel-sim-fraction-ℤ) = refl-sim-fraction-ℤ
pr1 (pr2 (pr2 eq-rel-sim-fraction-ℤ)) = symmetric-sim-fraction-ℤ
pr2 (pr2 (pr2 eq-rel-sim-fraction-ℤ)) = transitive-sim-fraction-ℤ
equivalence-relation-sim-fraction-ℤ : equivalence-relation lzero fraction-ℤ
pr1 equivalence-relation-sim-fraction-ℤ = sim-fraction-ℤ-Prop
pr1 (pr2 equivalence-relation-sim-fraction-ℤ) = refl-sim-fraction-ℤ
pr1 (pr2 (pr2 equivalence-relation-sim-fraction-ℤ)) = symmetric-sim-fraction-ℤ
pr2 (pr2 (pr2 equivalence-relation-sim-fraction-ℤ)) = transitive-sim-fraction-ℤ
```

### The greatest common divisor of the numerator and a denominator of a fraction is always a positive integer
Expand Down
2 changes: 1 addition & 1 deletion src/elementary-number-theory/rational-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ in-fraction-fraction-ℚ (pair (pair m (pair n n-pos)) p) =

```agda
reflecting-map-sim-fraction :
reflecting-map-Equivalence-Relation eq-rel-sim-fraction-ℤ ℚ
reflecting-map-equivalence-relation equivalence-relation-sim-fraction-ℤ ℚ
pr1 reflecting-map-sim-fraction = in-fraction-ℤ
pr2 reflecting-map-sim-fraction {x} {y} H = eq-ℚ-sim-fractions-ℤ x y H
```
Loading

0 comments on commit 4bfc70a

Please sign in to comment.