Skip to content

Commit

Permalink
Postulate components of coherent two-sided inverses for function exte…
Browse files Browse the repository at this point in the history
…nsionality and univalence (#1119)

Changes the postulates for funext and univalence such that there is
judgmentally only one converse map to `htpy-eq` and `equiv-eq`. The main
benefit, however, is that now `eq-htpy` and `eq-equiv` will appear with
their own names in Agda interactive mode, rather than as `pr1 (pr1
(funext ... ...))` and `pr1 (pr1 (univalence ... ...))`.

I leave it for potential future work to prove
`is-retraction-eq-(equiv|htpy)'` and `coh-eq-(equiv|htpy)'` rather than
postulate them, **_if_** we want this. Note that we could get away with
even fewer postulates if we really wanted to (see
[`TypeTopology/UF.Lower-FunExt`](https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Lower-FunExt.html)).
  • Loading branch information
fredrik-bakke authored Apr 25, 2024
1 parent aa95b6e commit 54becd8
Show file tree
Hide file tree
Showing 4 changed files with 106 additions and 46 deletions.
4 changes: 1 addition & 3 deletions src/foundation-core/contractible-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -248,9 +248,7 @@ abstract
((x : A) is-contr (B x)) is-contr ((x : A) B x)
pr1 (is-contr-Π {A = A} {B = B} H) x = center (H x)
pr2 (is-contr-Π {A = A} {B = B} H) f =
map-inv-is-equiv
( funext (λ x center (H x)) f)
( λ x contraction (H x) (f x))
eq-htpy (λ x contraction (H x) (f x))

abstract
is-contr-implicit-Π :
Expand Down
57 changes: 41 additions & 16 deletions src/foundation/function-extensionality.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,10 +14,13 @@ open import foundation.evaluation-functions
open import foundation.implicit-function-types
open import foundation.universe-levels

open import foundation-core.coherently-invertible-maps
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.retractions
open import foundation-core.sections
```

</details>
Expand Down Expand Up @@ -127,9 +130,37 @@ function-extensionality-Level l1 l2 =
```agda
function-extensionality : UUω
function-extensionality = {l1 l2 : Level} function-extensionality-Level l1 l2
```

Rather than postulating a witness of `function-extensionality` directly, we
postulate the constituents of a coherent two-sided inverse to `htpy-eq`. The
benefits are that we end up with a single converse map to `htpy-eq`, rather than
a separate section and retraction, although they would be homotopic regardless.
In addition, this formulation helps Agda display goals involving function
extensionality in a more readable way.

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : A UU l2} {f g : (x : A) B x}
where

postulate
funext : function-extensionality
postulate
eq-htpy : f ~ g f = g

is-section-eq-htpy : is-section htpy-eq eq-htpy

is-retraction-eq-htpy' : is-retraction htpy-eq eq-htpy

coh-eq-htpy' :
coherence-is-coherently-invertible
( htpy-eq)
( eq-htpy)
( is-section-eq-htpy)
( is-retraction-eq-htpy')

funext : function-extensionality
funext f g =
is-equiv-is-invertible eq-htpy is-section-eq-htpy is-retraction-eq-htpy'

module _
{l1 l2 : Level} {A : UU l1} {B : A UU l2}
Expand All @@ -139,25 +170,19 @@ module _
pr1 (equiv-funext) = htpy-eq
pr2 (equiv-funext {f} {g}) = funext f g

eq-htpy : {f g : (x : A) B x} f ~ g f = g
eq-htpy {f} {g} = map-inv-is-equiv (funext f g)
is-equiv-eq-htpy :
(f g : (x : A) B x) is-equiv (eq-htpy {f = f} {g})
is-equiv-eq-htpy f g =
is-equiv-is-invertible htpy-eq is-retraction-eq-htpy' is-section-eq-htpy

abstract
is-section-eq-htpy :
{f g : (x : A) B x} (htpy-eq ∘ eq-htpy {f} {g}) ~ id
is-section-eq-htpy {f} {g} = is-section-map-inv-is-equiv (funext f g)

is-retraction-eq-htpy :
{f g : (x : A) B x} (eq-htpy ∘ htpy-eq {f = f} {g = g}) ~ id
{f g : (x : A) B x} is-retraction (htpy-eq {f = f} {g}) eq-htpy
is-retraction-eq-htpy {f} {g} = is-retraction-map-inv-is-equiv (funext f g)

is-equiv-eq-htpy :
(f g : (x : A) B x) is-equiv (eq-htpy {f} {g})
is-equiv-eq-htpy f g = is-equiv-map-inv-is-equiv (funext f g)

eq-htpy-refl-htpy :
(f : (x : A) B x) eq-htpy (refl-htpy {f = f}) = refl
eq-htpy-refl-htpy f = is-retraction-eq-htpy refl
eq-htpy-refl-htpy :
(f : (x : A) B x) eq-htpy (refl-htpy {f = f}) = refl
eq-htpy-refl-htpy f = is-retraction-eq-htpy refl

equiv-eq-htpy : {f g : (x : A) B x} (f ~ g) ≃ (f = g)
pr1 (equiv-eq-htpy {f} {g}) = eq-htpy
Expand Down
45 changes: 30 additions & 15 deletions src/foundation/identity-systems.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,13 +9,17 @@ module foundation.identity-systems where
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.fundamental-theorem-of-identity-types
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.families-of-equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.retractions
open import foundation-core.sections
open import foundation-core.torsorial-type-families
open import foundation-core.transport-along-identifications
Expand Down Expand Up @@ -79,27 +83,38 @@ module _
{l1 l2 : Level} {A : UU l1} {B : A UU l2} (a : A) (b : B a)
where

map-section-is-identity-system-is-torsorial :
is-torsorial B
{l3 : Level} (P : (x : A) (y : B x) UU l3)
P a b (x : A) (y : B x) P x y
map-section-is-identity-system-is-torsorial H P p x y =
tr (fam-Σ P) (eq-is-contr H) p

is-section-map-section-is-identity-system-is-torsorial :
(H : is-torsorial B)
{l3 : Level} (P : (x : A) (y : B x) UU l3)
is-section
( ev-refl-identity-system b)
( map-section-is-identity-system-is-torsorial H P)
is-section-map-section-is-identity-system-is-torsorial H P p =
ap
( λ t tr (fam-Σ P) t p)
( eq-is-contr'
( is-prop-is-contr H (a , b) (a , b))
( eq-is-contr H)
( refl))

abstract
is-identity-system-is-torsorial :
(H : is-torsorial B) is-identity-system B a b
pr1 (is-identity-system-is-torsorial H P) p x y =
tr
( fam-Σ P)
( eq-is-contr H)
( p)
pr2 (is-identity-system-is-torsorial H P) p =
ap
( λ t tr (fam-Σ P) t p)
( eq-is-contr'
( is-prop-is-contr H (a , b) (a , b))
( eq-is-contr H)
( refl))
is-torsorial B is-identity-system B a b
is-identity-system-is-torsorial H P =
( map-section-is-identity-system-is-torsorial H P ,
is-section-map-section-is-identity-system-is-torsorial H P)

abstract
is-torsorial-is-identity-system :
is-identity-system B a b is-torsorial B
pr1 (pr1 (is-torsorial-is-identity-system H)) = a
pr2 (pr1 (is-torsorial-is-identity-system H)) = b
pr1 (is-torsorial-is-identity-system H) = (a , b)
pr2 (is-torsorial-is-identity-system H) (x , y) =
pr1 (H (λ x' y' (a , b) = (x' , y'))) refl x y

Expand Down
46 changes: 34 additions & 12 deletions src/foundation/univalence.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ open import foundation.equivalences
open import foundation.fundamental-theorem-of-identity-types
open import foundation.universe-levels

open import foundation-core.coherently-invertible-maps
open import foundation-core.contractible-types
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
Expand All @@ -39,11 +40,37 @@ that the map `(A = B) → (A ≃ B)` is an
In this file we postulate the univalence axiom. Its statement is defined in
[`foundation-core.univalence`](foundation-core.univalence.md).

## Postulate
## Postulates

Rather than postulating a witness of `univalence-axiom` directly, we postulate
the constituents of a coherent two-sided inverse to `equiv-eq`. The benefits are
that we end up with a single converse map to `equiv-eq`, rather than a separate
section and retraction, although they would be homotopic regardless. In
addition, this formulation helps Agda display goals involving the univalence
axiom in a more readable way.

```agda
postulate
univalence : univalence-axiom
module _
{l : Level} {A B : UU l}
where

postulate
eq-equiv : A ≃ B A = B

is-section-eq-equiv : is-section equiv-eq eq-equiv

is-retraction-eq-equiv' : is-retraction equiv-eq eq-equiv

coh-eq-equiv' :
coherence-is-coherently-invertible
( equiv-eq)
( eq-equiv)
( is-section-eq-equiv)
( is-retraction-eq-equiv')

univalence : univalence-axiom
univalence A B =
is-equiv-is-invertible eq-equiv is-section-eq-equiv is-retraction-eq-equiv'
```

## Properties
Expand All @@ -57,23 +84,18 @@ module _
pr1 equiv-univalence = equiv-eq
pr2 equiv-univalence = univalence A B

eq-equiv : A ≃ B A = B
eq-equiv = map-inv-is-equiv (univalence A B)

abstract
is-section-eq-equiv : is-section equiv-eq eq-equiv
is-section-eq-equiv = is-section-map-inv-is-equiv (univalence A B)

is-retraction-eq-equiv : is-retraction equiv-eq eq-equiv
is-retraction-eq-equiv : is-retraction (equiv-eq {A = A} {B}) eq-equiv
is-retraction-eq-equiv =
is-retraction-map-inv-is-equiv (univalence A B)

module _
{l : Level}
where

is-equiv-eq-equiv : (A B : UU l) is-equiv (eq-equiv)
is-equiv-eq-equiv A B = is-equiv-map-inv-is-equiv (univalence A B)
is-equiv-eq-equiv : (A B : UU l) is-equiv (eq-equiv {A = A} {B})
is-equiv-eq-equiv A B =
is-equiv-is-invertible equiv-eq is-retraction-eq-equiv' is-section-eq-equiv

compute-eq-equiv-id-equiv : (A : UU l) eq-equiv {A = A} id-equiv = refl
compute-eq-equiv-id-equiv A = is-retraction-eq-equiv refl
Expand Down

0 comments on commit 54becd8

Please sign in to comment.