Skip to content

Commit

Permalink
Equality in iterated Sigma types (#899)
Browse files Browse the repository at this point in the history
Computed some equalities in iterated Sigma types. Maybe this can be
generalized some more, but this is what I currently need for my work
with pushouts, where some cocone structures involve equality of a
quadruple. Input on the names is welcome as usual.
  • Loading branch information
maybemabeline authored Nov 9, 2023
1 parent 82b59b9 commit 58d3041
Show file tree
Hide file tree
Showing 4 changed files with 115 additions and 7 deletions.
10 changes: 5 additions & 5 deletions src/foundation-core/equality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -109,13 +109,13 @@ module _
η-pair : (t : Σ A B) (pair (pr1 t) (pr2 t)) = t
η-pair t = refl

eq-base-eq-pair : {s t : Σ A B} (s = t) (pr1 s = pr1 t)
eq-base-eq-pair p = pr1 (pair-eq-Σ p)
eq-base-eq-pair : {s t : Σ A B} (s = t) (pr1 s = pr1 t)
eq-base-eq-pair p = pr1 (pair-eq-Σ p)

dependent-eq-family-eq-pair :
dependent-eq-family-eq-pair :
{s t : Σ A B} (p : s = t)
dependent-identification B (eq-base-eq-pair p) (pr2 s) (pr2 t)
dependent-eq-family-eq-pair p = pr2 (pair-eq-Σ p)
dependent-identification B (eq-base-eq-pair p) (pr2 s) (pr2 t)
dependent-eq-family-eq-pair p = pr2 (pair-eq-Σ p)
```

### Lifting equality to the total space
Expand Down
4 changes: 4 additions & 0 deletions src/foundation-core/equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -588,6 +588,10 @@ module _
(e : A ≃ B) (x y : A) (x = y) ≃ (map-equiv e x = map-equiv e y)
pr1 (equiv-ap e x y) = ap (map-equiv e)
pr2 (equiv-ap e x y) = is-emb-is-equiv (is-equiv-map-equiv e) x y

map-inv-equiv-ap :
(e : A ≃ B) (x y : A) (map-equiv e x = map-equiv e y) (x = y)
map-inv-equiv-ap e x y = map-inv-equiv (equiv-ap e x y)
```

## Equivalence reasoning
Expand Down
100 changes: 98 additions & 2 deletions src/foundation/equality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,15 @@ open import foundation-core.equality-dependent-pair-types public
```agda
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.contractible-types
open import foundation.dependent-identifications
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.transport-along-identifications
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels

open import foundation-core.function-types
Expand Down Expand Up @@ -113,7 +119,7 @@ module _

```agda
module _
{ l1 l2 l3 : Level} {A : UU l1} {B : A UU l2} {Y : UU l3} (f : Σ A B Y)
{l1 l2 l3 : Level} {A : UU l1} {B : A UU l2} {Y : UU l3} (f : Σ A B Y)
where

compute-ap-eq-pair-Σ :
Expand All @@ -127,7 +133,7 @@ module _

```agda
module _
{ l1 l2 : Level} {A : UU l1} (B : A UU l2)
{l1 l2 : Level} {A : UU l1} (B : A UU l2)
where

triangle-eq-pair-Σ :
Expand All @@ -137,6 +143,96 @@ module _
triangle-eq-pair-Σ refl q = refl
```

### Computing identifications in iterated dependent pair types

#### Computing identifications in dependent pair types of the form Σ (Σ A B) C

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A UU l2} {C : Σ A B UU l3}
where

Eq-Σ²' : (s t : Σ (Σ A B) C) UU (l1 ⊔ l2 ⊔ l3)
Eq-Σ²' s t =
Σ ( Eq-Σ (pr1 s) (pr1 t))
( λ q dependent-identification C (eq-pair-Σ' q) (pr2 s) (pr2 t))

equiv-triple-eq-Σ' :
(s t : Σ (Σ A B) C)
(s = t) ≃ Eq-Σ²' s t
equiv-triple-eq-Σ' s t =
( equiv-Σ
( λ q
( dependent-identification
( C)
( eq-pair-Σ' q)
( pr2 s)
( pr2 t)))
( equiv-pair-eq-Σ (pr1 s) (pr1 t))
( λ p
( equiv-tr
( λ q dependent-identification C q (pr2 s) (pr2 t))
( inv (is-section-pair-eq-Σ (pr1 s) (pr1 t) p))))) ∘e
( equiv-pair-eq-Σ s t)

triple-eq-Σ' :
(s t : Σ (Σ A B) C)
(s = t) Eq-Σ²' s t
triple-eq-Σ' s t = map-equiv (equiv-triple-eq-Σ' s t)
```

#### Computing dependent identifications on the second component

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A UU l2} {C : (x : A) B x UU l3}
where

coh-eq-base-Σ² :
{s t : Σ A (λ x Σ (B x) λ y C x y)} (p : s = t)
eq-base-eq-pair-Σ p =
eq-base-eq-pair-Σ (eq-base-eq-pair-Σ (ap (map-inv-associative-Σ' A B C) p))
coh-eq-base-Σ² refl = refl

dependent-eq-second-component-eq-Σ² :
{s t : Σ A (λ x Σ (B x) λ y C x y)} (p : s = t)
dependent-identification B (eq-base-eq-pair-Σ p) (pr1 (pr2 s)) (pr1 (pr2 t))
dependent-eq-second-component-eq-Σ² {s = s} {t = t} p =
( ap (λ q tr B q (pr1 (pr2 s))) (coh-eq-base-Σ² p)) ∙
( pr2
( pr1
( triple-eq-Σ'
( map-inv-associative-Σ' A B C s)
( map-inv-associative-Σ' A B C t)
( ap (map-inv-associative-Σ' A B C) p))))
```

#### Computing dependent identifications on the third component

```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : A UU l2} {C : A UU l3}
(D : (x : A) B x C x UU l4)
where

coh-eq-base-Σ³ :
{ s t : Σ A (λ x Σ (B x) (λ y Σ (C x) (D x y)))} (p : s = t)
eq-base-eq-pair-Σ p =
eq-base-eq-pair-Σ (ap (map-equiv (interchange-Σ-Σ-Σ D)) p)
coh-eq-base-Σ³ refl = refl

dependent-eq-third-component-eq-Σ³ :
{ s t : Σ A (λ x Σ (B x) (λ y Σ (C x) (D x y)))} (p : s = t)
dependent-identification C
( eq-base-eq-pair-Σ p)
( pr1 (pr2 (pr2 s)))
( pr1 (pr2 (pr2 t)))
dependent-eq-third-component-eq-Σ³ {s = s} {t = t} p =
( ap (λ q tr C q (pr1 (pr2 (pr2 s)))) (coh-eq-base-Σ³ p)) ∙
( dependent-eq-second-component-eq-Σ²
( ap (map-equiv (interchange-Σ-Σ-Σ D)) p))
```

## See also

- Equality proofs in cartesian product types are characterized in
Expand Down
8 changes: 8 additions & 0 deletions src/foundation/type-arithmetic-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -305,6 +305,14 @@ module _
pr1 interchange-Σ-Σ = map-interchange-Σ-Σ
pr2 interchange-Σ-Σ = is-equiv-map-interchange-Σ-Σ

interchange-Σ-Σ-Σ :
Σ A (λ x Σ (B x) (λ y Σ (C x) (D x y))) ≃
Σ A (λ x Σ (C x) (λ z Σ (B x) λ y D x y z))
interchange-Σ-Σ-Σ =
associative-Σ' A C (λ x z Σ (B x) λ y D x y z) ∘e
interchange-Σ-Σ ∘e
inv-associative-Σ' A B (λ x y Σ (C x) (D x y))

eq-interchange-Σ-Σ-is-contr :
{a : A} {b : B a} is-torsorial (D a b)
{x y : Σ (C a) (D a b)}
Expand Down

0 comments on commit 58d3041

Please sign in to comment.