Skip to content

Commit

Permalink
Merge branch 'master' into compact
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke authored Nov 27, 2023
2 parents b2982f4 + fe41f7e commit 63048fd
Show file tree
Hide file tree
Showing 157 changed files with 5,272 additions and 1,095 deletions.
2 changes: 2 additions & 0 deletions src/category-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -115,9 +115,11 @@ open import category-theory.natural-transformations-maps-precategories public
open import category-theory.nonunital-precategories public
open import category-theory.one-object-precategories public
open import category-theory.opposite-categories public
open import category-theory.opposite-large-precategories public
open import category-theory.opposite-precategories public
open import category-theory.opposite-preunivalent-categories public
open import category-theory.precategories public
open import category-theory.precategory-of-elements-of-a-presheaf public
open import category-theory.precategory-of-functors public
open import category-theory.precategory-of-functors-from-small-to-large-precategories public
open import category-theory.precategory-of-maps-from-small-to-large-precategories public
Expand Down
37 changes: 31 additions & 6 deletions src/category-theory/augmented-simplex-category.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,27 +68,52 @@ associative-comp-hom-augmented-simplex-Category :
(h : hom-augmented-simplex-Category r s)
(g : hom-augmented-simplex-Category m r)
(f : hom-augmented-simplex-Category n m)
( comp-hom-augmented-simplex-Category {n} {m} {s}
comp-hom-augmented-simplex-Category {n} {m} {s}
( comp-hom-augmented-simplex-Category {m} {r} {s} h g)
( f))
( comp-hom-augmented-simplex-Category {n} {r} {s}
( f) =
comp-hom-augmented-simplex-Category {n} {r} {s}
( h)
( comp-hom-augmented-simplex-Category {n} {m} {r} g f))
( comp-hom-augmented-simplex-Category {n} {m} {r} g f)
associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} =
associative-comp-hom-Poset
( Fin-Poset n)
( Fin-Poset m)
( Fin-Poset r)
( Fin-Poset s)

inv-associative-comp-hom-augmented-simplex-Category :
{n m r s : obj-augmented-simplex-Category}
(h : hom-augmented-simplex-Category r s)
(g : hom-augmented-simplex-Category m r)
(f : hom-augmented-simplex-Category n m)
comp-hom-augmented-simplex-Category {n} {r} {s}
( h)
( comp-hom-augmented-simplex-Category {n} {m} {r} g f) =
comp-hom-augmented-simplex-Category {n} {m} {s}
( comp-hom-augmented-simplex-Category {m} {r} {s} h g)
( f)
inv-associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} =
inv-associative-comp-hom-Poset
( Fin-Poset n)
( Fin-Poset m)
( Fin-Poset r)
( Fin-Poset s)

associative-composition-operation-augmented-simplex-Category :
associative-composition-operation-binary-family-Set
hom-set-augmented-simplex-Category
pr1 associative-composition-operation-augmented-simplex-Category {n} {m} {r} =
comp-hom-augmented-simplex-Category {n} {m} {r}
pr1
( pr2
associative-composition-operation-augmented-simplex-Category
{ n} {m} {r} {s} h g f) =
associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} h g f
pr2
associative-composition-operation-augmented-simplex-Category {n} {m} {r} {s} =
associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s}
( pr2
associative-composition-operation-augmented-simplex-Category
{ n} {m} {r} {s} h g f) =
inv-associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} h g f

id-hom-augmented-simplex-Category :
(n : obj-augmented-simplex-Category) hom-augmented-simplex-Category n n
Expand Down
10 changes: 10 additions & 0 deletions src/category-theory/categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,16 @@ module _
associative-comp-hom-Category =
associative-comp-hom-Precategory precategory-Category

inv-associative-comp-hom-Category :
{x y z w : obj-Category}
(h : hom-Category z w)
(g : hom-Category y z)
(f : hom-Category x y)
comp-hom-Category h (comp-hom-Category g f) =
comp-hom-Category (comp-hom-Category h g) f
inv-associative-comp-hom-Category =
inv-associative-comp-hom-Precategory precategory-Category

associative-composition-operation-Category :
associative-composition-operation-binary-family-Set hom-set-Category
associative-composition-operation-Category =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,13 @@ module _

### Associative composition operations in binary families of sets

We give a slightly non-standard definition of associativity, requiring an
associativity witness in each direction. This is of course redundant as `inv` is
a [fibered involution](foundation.fibered-involutions.md) on
[identity types](foundation-core.identity-types.md). However, by recording both
directions we maintain a definitional double inverse law which is practical in
defining the [opposite category](category-theory.opposite-categories.md).

```agda
module _
{l1 l2 : Level} {A : UU l1} (hom-set : A A Set l2)
Expand All @@ -64,12 +71,86 @@ module _
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
comp-hom (comp-hom h g) f = comp-hom h (comp-hom g f)
( comp-hom (comp-hom h g) f = comp-hom h (comp-hom g f)) ×
( comp-hom h (comp-hom g f) = comp-hom (comp-hom h g) f)

associative-composition-operation-binary-family-Set : UU (l1 ⊔ l2)
associative-composition-operation-binary-family-Set =
Σ ( composition-operation-binary-family-Set hom-set)
( is-associative-composition-operation-binary-family-Set)

module _
{l1 l2 : Level} {A : UU l1} (hom-set : A A Set l2)
(H : associative-composition-operation-binary-family-Set hom-set)
where

comp-hom-associative-composition-operation-binary-family-Set :
composition-operation-binary-family-Set hom-set
comp-hom-associative-composition-operation-binary-family-Set = pr1 H

witness-associative-composition-operation-binary-family-Set :
{x y z w : A}
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
( comp-hom-associative-composition-operation-binary-family-Set
( comp-hom-associative-composition-operation-binary-family-Set h g) (f)) =
( comp-hom-associative-composition-operation-binary-family-Set
( h) (comp-hom-associative-composition-operation-binary-family-Set g f))
witness-associative-composition-operation-binary-family-Set h g f =
pr1 (pr2 H h g f)

inv-witness-associative-composition-operation-binary-family-Set :
{x y z w : A}
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
( comp-hom-associative-composition-operation-binary-family-Set
( h) (comp-hom-associative-composition-operation-binary-family-Set g f)) =
( comp-hom-associative-composition-operation-binary-family-Set
( comp-hom-associative-composition-operation-binary-family-Set h g) (f))
inv-witness-associative-composition-operation-binary-family-Set h g f =
pr2 (pr2 H h g f)
```

```agda
module _
{l1 l2 : Level} {A : UU l1}
(hom-set : A A Set l2)
(comp-hom : composition-operation-binary-family-Set hom-set)
where

is-associative-witness-associative-composition-operation-binary-family-Set :
( {x y z w : A}
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
comp-hom (comp-hom h g) f = comp-hom h (comp-hom g f))
is-associative-composition-operation-binary-family-Set hom-set comp-hom
pr1
( is-associative-witness-associative-composition-operation-binary-family-Set
H h g f) =
H h g f
pr2
( is-associative-witness-associative-composition-operation-binary-family-Set
H h g f) =
inv (H h g f)

is-associative-inv-witness-associative-composition-operation-binary-family-Set :
( {x y z w : A}
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
comp-hom h (comp-hom g f) = comp-hom (comp-hom h g) f)
is-associative-composition-operation-binary-family-Set hom-set comp-hom
pr1
( is-associative-inv-witness-associative-composition-operation-binary-family-Set
H h g f) =
inv (H h g f)
pr2
( is-associative-inv-witness-associative-composition-operation-binary-family-Set
H h g f) =
H h g f
```

### Unital composition operations in binary families of sets
Expand Down Expand Up @@ -106,10 +187,15 @@ module _
( λ x y z w
is-prop-iterated-Π 3
( λ h g f
is-set-type-Set
( hom-set x w)
( comp-hom (comp-hom h g) f)
( comp-hom h (comp-hom g f))))
is-prop-prod
( is-set-type-Set
( hom-set x w)
( comp-hom (comp-hom h g) f)
( comp-hom h (comp-hom g f)))
( is-set-type-Set
( hom-set x w)
( comp-hom h (comp-hom g f))
( comp-hom (comp-hom h g) f))))

is-associative-prop-composition-operation-binary-family-Set : Prop (l1 ⊔ l2)
pr1 is-associative-prop-composition-operation-binary-family-Set =
Expand Down
Loading

0 comments on commit 63048fd

Please sign in to comment.