Skip to content

Commit

Permalink
Rename is-torsorial-path to is-torsorial-Id (#1016)
Browse files Browse the repository at this point in the history
That's it. Also renames `is-torsorial-path'` to `is-torsorial-Id'`.
  • Loading branch information
fredrik-bakke authored Jan 31, 2024
1 parent 302154e commit 69abb58
Show file tree
Hide file tree
Showing 61 changed files with 109 additions and 109 deletions.
4 changes: 2 additions & 2 deletions src/category-theory/groupoids.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -165,12 +165,12 @@ module _
Σ ( Σ (y = x) (λ q q ∙ p = refl))
( λ (q , l) p ∙ q = refl))))
( is-contr-iterated-Σ 2
( is-torsorial-path x ,
( is-torsorial-Id x ,
( x , refl) ,
( is-contr-equiv
( Σ (x = x) (λ q q = refl))
( equiv-tot (λ q equiv-concat (inv right-unit) refl))
( is-torsorial-path' refl)) ,
( is-torsorial-Id' refl)) ,
( refl , refl) ,
( is-proof-irrelevant-is-prop
( is-1-type-type-1-Type X x x refl refl)
Expand Down
4 changes: 2 additions & 2 deletions src/category-theory/isomorphisms-in-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -743,15 +743,15 @@ module _
is-contr-equiv'
( Σ (obj-Category C) (X =_))
( equiv-tot (extensionality-obj-Category C X))
( is-torsorial-path X)
( is-torsorial-Id X)

is-torsorial-iso-Category' :
is-torsorial (λ Y iso-Category C Y X)
is-torsorial-iso-Category' =
is-contr-equiv'
( Σ (obj-Category C) (_= X))
( equiv-tot (λ Y extensionality-obj-Category C Y X))
( is-torsorial-path' X)
( is-torsorial-Id' X)
```

### Functoriality of `eq-iso`
Expand Down
4 changes: 2 additions & 2 deletions src/category-theory/isomorphisms-in-large-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -199,15 +199,15 @@ module _
is-contr-equiv'
( Σ (obj-Large-Category C l1) (X =_))
( equiv-tot (extensionality-obj-Large-Category C X))
( is-torsorial-path X)
( is-torsorial-Id X)

is-torsorial-iso-Large-Category' :
is-torsorial (λ Y iso-Large-Category C Y X)
is-torsorial-iso-Large-Category' =
is-contr-equiv'
( Σ (obj-Large-Category C l1) (_= X))
( equiv-tot (λ Y extensionality-obj-Large-Category C Y X))
( is-torsorial-path' X)
( is-torsorial-Id' X)
```

## Properties
Expand Down
2 changes: 1 addition & 1 deletion src/category-theory/slice-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,7 @@ module _
( Σ (hom-Precategory C A X) (λ g f = g))
( equiv-tot
( λ g equiv-concat' f (left-unit-law-comp-hom-Precategory C g)))
( is-torsorial-path f)
( is-torsorial-Id f)
```

### Products in slice precategories are pullbacks in the original category
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ abstract
( tot (λ α right-transpose-eq-concat refl α (pr1 (pr2 s))))
( is-equiv-tot-is-fiberwise-equiv
( λ α is-equiv-right-transpose-eq-concat refl α (pr1 (pr2 s))))
( is-torsorial-path' (pr1 (pr2 s))))
( is-torsorial-Id' (pr1 (pr2 s))))
( pair (pr1 (pr2 s)) (inv (right-inv (pr1 (pr2 s)))))
( is-contr-is-equiv'
( Σ ( ( k : ℤ) Id (pr1 s (succ-ℤ k)) (pr1 (pS k) (pr1 s k)))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ module _
( is-torsorial-htpy (pr1 h))
( pair (pr1 h) refl-htpy)
( is-torsorial-Eq-structure
( is-torsorial-path (pr1 (pr2 h)))
( is-torsorial-Id (pr1 (pr2 h)))
( pair (pr1 (pr2 h)) refl)
( is-torsorial-htpy (λ n (pr2 (pr2 h) n ∙ refl))))

Expand Down
16 changes: 8 additions & 8 deletions src/foundation-core/contractible-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -82,16 +82,16 @@ module _
where

abstract
is-torsorial-path : (a : A) is-contr (Σ A (λ x a = x))
pr1 (pr1 (is-torsorial-path a)) = a
pr2 (pr1 (is-torsorial-path a)) = refl
pr2 (is-torsorial-path a) (pair .a refl) = refl
is-torsorial-Id : (a : A) is-contr (Σ A (λ x a = x))
pr1 (pr1 (is-torsorial-Id a)) = a
pr2 (pr1 (is-torsorial-Id a)) = refl
pr2 (is-torsorial-Id a) (pair .a refl) = refl

abstract
is-torsorial-path' : (a : A) is-contr (Σ A (λ x x = a))
pr1 (pr1 (is-torsorial-path' a)) = a
pr2 (pr1 (is-torsorial-path' a)) = refl
pr2 (is-torsorial-path' a) (pair .a refl) = refl
is-torsorial-Id' : (a : A) is-contr (Σ A (λ x x = a))
pr1 (pr1 (is-torsorial-Id' a)) = a
pr2 (pr1 (is-torsorial-Id' a)) = refl
pr2 (is-torsorial-Id' a) (pair .a refl) = refl
```

## Properties
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/embeddings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -279,7 +279,7 @@ module _
is-section-inv-map-Σ-emb-base (b , c) =
ap
( λ s (pr1 s , inv-tr C (pr2 s) c))
( eq-is-contr (is-torsorial-path' b))
( eq-is-contr (is-torsorial-Id' b))

is-retraction-inv-map-Σ-emb-base :
is-retraction (map-Σ-map-base (map-emb f) C) inv-map-Σ-emb-base
Expand Down
4 changes: 2 additions & 2 deletions src/foundation/equality-coproduct-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -230,7 +230,7 @@ module _
( is-contr-equiv
( Σ A (Id x))
( equiv-tot (compute-eq-coprod-inl-inl x))
( is-torsorial-path x))
( is-torsorial-Id x))
( λ y ap inl)

emb-inl : A ↪ (A + B)
Expand All @@ -244,7 +244,7 @@ module _
( is-contr-equiv
( Σ B (Id x))
( equiv-tot (compute-eq-coprod-inr-inr x))
( is-torsorial-path x))
( is-torsorial-Id x))
( λ y ap inr)

emb-inr : B ↪ (A + B)
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/families-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ module _
≃ (((x , _) : Σ A B)
Σ (Σ A (x =_)) λ (x' , _) C x') by equiv-Π-equiv-family (λ (x , _)
inv-left-unit-law-Σ-is-contr
(is-torsorial-path x)
(is-torsorial-Id x)
(x , refl))
≃ (((x , _) : Σ A B)
Σ (Σ A C) λ (x' , _) x = x') by equiv-Π-equiv-family (λ (x , _)
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/functional-correspondences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -155,7 +155,7 @@ module _
((x : A) B x) functional-correspondence l2 A B
pr1 (functional-correspondence-function f) x y = f x = y
pr2 (functional-correspondence-function f) x =
is-torsorial-path (f x)
is-torsorial-Id (f x)

function-functional-correspondence :
{l3 : Level} functional-correspondence l3 A B ((x : A) B x)
Expand Down
10 changes: 5 additions & 5 deletions src/foundation/fundamental-theorem-of-identity-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ module _
is-torsorial B (f : (x : A) a = x B x) is-fiberwise-equiv f
fundamental-theorem-id is-contr-AB f =
is-fiberwise-equiv-is-equiv-tot
( is-equiv-is-contr (tot f) (is-torsorial-path a) is-contr-AB)
( is-equiv-is-contr (tot f) (is-torsorial-Id a) is-contr-AB)

abstract
fundamental-theorem-id' :
Expand All @@ -71,7 +71,7 @@ module _
( Σ A (Id a))
( tot f)
( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-f)
( is-torsorial-path a)
( is-torsorial-Id a)
```

## Corollaries
Expand All @@ -95,7 +95,7 @@ module _
( Σ A (Id a))
( tot (ind-Id a (λ x p B x) b))
( is-equiv-tot-is-fiberwise-equiv H)
( is-torsorial-path a)
( is-torsorial-Id a)
```

### Retracts of the identity type are equivalent to the identity type
Expand All @@ -120,8 +120,8 @@ module _
( ( inv-htpy (preserves-comp-tot i (pr1 ∘ R))) ∙h
( tot-htpy (pr2 ∘ R)) ∙h
( tot-id B)))
( is-torsorial-path a))
( is-torsorial-path a))
( is-torsorial-Id a))
( is-torsorial-Id a))

fundamental-theorem-id-retract :
(R : (x : A) (B x) retract-of (a = x))
Expand Down
4 changes: 2 additions & 2 deletions src/foundation/homotopy-induction.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -90,15 +90,15 @@ module _
is-contr-equiv'
( Σ ((x : A) B x) (Id f))
( equiv-tot (λ g equiv-funext))
( is-torsorial-path f)
( is-torsorial-Id f)

abstract
is-torsorial-htpy' : is-torsorial (λ g g ~ f)
is-torsorial-htpy' =
is-contr-equiv'
( Σ ((x : A) B x) (λ g g = f))
( equiv-tot (λ g equiv-funext))
( is-torsorial-path' f)
( is-torsorial-Id' f)
```

### Homotopy induction is equivalent to function extensionality
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/images.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ module _
(x : im f) is-torsorial (Eq-im x)
is-torsorial-Eq-im x =
is-torsorial-Eq-subtype
( is-torsorial-path (pr1 x))
( is-torsorial-Id (pr1 x))
( λ x is-prop-type-trunc-Prop)
( pr1 x)
( refl)
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/logical-equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ compute-fiber-iff-equiv :
fiber (iff-equiv) (f , g) ≃ Σ (is-equiv f) (λ f' map-inv-is-equiv f' ~ g)
compute-fiber-iff-equiv {A = A} {B} (f , g) =
( equiv-tot (λ _ equiv-funext)) ∘e
( left-unit-law-Σ-is-contr (is-torsorial-path' f) (f , refl)) ∘e
( left-unit-law-Σ-is-contr (is-torsorial-Id' f) (f , refl)) ∘e
( inv-associative-Σ (A B) (_= f) _) ∘e
( equiv-tot (λ _ equiv-left-swap-Σ)) ∘e
( associative-Σ (A B) _ _) ∘e
Expand Down
4 changes: 2 additions & 2 deletions src/foundation/multivariable-homotopies.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -194,7 +194,7 @@ abstract
is-torsorial-multivariable-htpy :
{l : Level} (n : ℕ) {{A : telescope l n}} (f : iterated-Π A)
is-torsorial (multivariable-htpy {{A}} f)
is-torsorial-multivariable-htpy .0 {{base-telescope A}} = is-torsorial-path
is-torsorial-multivariable-htpy .0 {{base-telescope A}} = is-torsorial-Id
is-torsorial-multivariable-htpy ._ {{cons-telescope A}} f =
is-torsorial-Eq-Π (λ x is-torsorial-multivariable-htpy _ {{A x}} (f x))

Expand All @@ -206,7 +206,7 @@ abstract
is-contr-equiv'
( Σ (iterated-implicit-Π A) (Id {A = iterated-implicit-Π A} f))
( equiv-tot (λ _ equiv-iterated-funext-implicit _ {{A}}))
( is-torsorial-path {A = iterated-implicit-Π A} f)
( is-torsorial-Id {A = iterated-implicit-Π A} f)

abstract
is-torsorial-multivariable-implicit-htpy :
Expand Down
4 changes: 2 additions & 2 deletions src/foundation/pairs-of-distinct-elements.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -84,10 +84,10 @@ module _
is-torsorial (Eq-pair-of-distinct-elements p)
is-torsorial-Eq-pair-of-distinct-elements p =
is-torsorial-Eq-structure
( is-torsorial-path (first-pair-of-distinct-elements p))
( is-torsorial-Id (first-pair-of-distinct-elements p))
( pair (first-pair-of-distinct-elements p) refl)
( is-torsorial-Eq-subtype
( is-torsorial-path (second-pair-of-distinct-elements p))
( is-torsorial-Id (second-pair-of-distinct-elements p))
( λ x is-prop-neg)
( second-pair-of-distinct-elements p)
( refl)
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/partitions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -641,7 +641,7 @@ module _
( subtype-inhabited-subtype Q x)) ∘e
( equiv-inv-equiv))) ∘e
( left-unit-law-Σ-is-contr
( is-torsorial-path (index-Set-Indexed-Σ-Decomposition D a))
( is-torsorial-Id (index-Set-Indexed-Σ-Decomposition D a))
( pair
( index-Set-Indexed-Σ-Decomposition D a)
( refl)))) ∘e
Expand Down
8 changes: 4 additions & 4 deletions src/foundation/pullbacks.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -1145,11 +1145,11 @@ module _
( c)
( cone-ap' c1))
( is-equiv-is-contr _
( is-torsorial-path (horizontal-map-cone f g c c1))
( is-torsorial-path (f (vertical-map-cone f g c c1))))
( is-torsorial-Id (horizontal-map-cone f g c c1))
( is-torsorial-Id (f (vertical-map-cone f g c c1))))
( is-equiv-is-contr _
( is-torsorial-path c1)
( is-torsorial-path (vertical-map-cone f g c c1))))
( is-torsorial-Id c1)
( is-torsorial-Id (vertical-map-cone f g c c1))))
( c2))
```

Expand Down
2 changes: 1 addition & 1 deletion src/foundation/russells-paradox.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ paradox-Russell {l} H =
β = ( equiv-precomp α empty) ∘e
( ( left-unit-law-Σ-is-contr
{ B = λ t (pr1 t) ∉-𝕍 (pr1 t)}
( is-torsorial-path' R')
( is-torsorial-Id' R')
( pair R' refl)) ∘e
( ( inv-associative-Σ (𝕍 l) (_= R') (λ t (pr1 t) ∉-𝕍 (pr1 t))) ∘e
( ( equiv-tot
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/sections.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ module _
( is-contr-equiv
( Π-total-fam (λ x y y = x))
( inv-distributive-Π-Σ)
( is-contr-Π is-torsorial-path'))
( is-contr-Π is-torsorial-Id'))
( id , refl-htpy)) ∘e
( equiv-right-swap-Σ) ∘e
( equiv-Σ-equiv-base ( λ s pr1 s ~ id) ( distributive-Π-Σ))
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/sequential-limits.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,7 @@ module _
is-torsorial-Eq-structure
( is-torsorial-htpy (pr1 s))
( pr1 s , refl-htpy)
( is-torsorial-Eq-Π (λ n is-torsorial-path (pr2 s n ∙ refl)))
( is-torsorial-Eq-Π (λ n is-torsorial-Id (pr2 s n ∙ refl)))

is-equiv-Eq-eq-standard-sequential-limit :
(s t : standard-sequential-limit A)
Expand Down
8 changes: 4 additions & 4 deletions src/foundation/singleton-subtypes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ module _

standard-singleton-subtype : singleton-subtype l (type-Set X)
pr1 standard-singleton-subtype = subtype-standard-singleton-subtype
pr2 standard-singleton-subtype = is-torsorial-path x
pr2 standard-singleton-subtype = is-torsorial-Id x

inhabited-subtype-standard-singleton-subtype :
inhabited-subtype l (type-Set X)
Expand Down Expand Up @@ -248,8 +248,8 @@ module _
( λ y
( inv-equiv (equiv-unit-trunc-Prop (Id-Prop Y (f x) y))) ∘e
( equiv-trunc-Prop
( left-unit-law-Σ-is-contr (is-torsorial-path x) (x , refl)))))
( is-torsorial-path (f x))
( left-unit-law-Σ-is-contr (is-torsorial-Id x) (x , refl)))))
( is-torsorial-Id (f x))

compute-im-singleton-subtype :
has-same-elements-subtype
Expand All @@ -261,7 +261,7 @@ module _
( im-subtype f (subtype-standard-singleton-subtype X x))
( refl)
( unit-trunc-Prop ((x , refl) , refl))
( is-torsorial-path (f x))
( is-torsorial-Id (f x))
( is-singleton-im-singleton-subtype)
```

Expand Down
2 changes: 1 addition & 1 deletion src/foundation/symmetric-identity-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ module _
(p : symmetric-Id a) is-torsorial (Eq-symmetric-Id p)
is-torsorial-Eq-symmetric-Id (x , H) =
is-torsorial-Eq-structure
( is-torsorial-path x)
( is-torsorial-Id x)
( x , refl)
( is-torsorial-htpy H)

Expand Down
2 changes: 1 addition & 1 deletion src/foundation/type-duality.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ is-emb-map-type-duality {l} {l1} {A} H (X , f) =
( Σ Y (λ y type-is-small (H (g y) a)))) ∘e
( equiv-univalence))) ∘e
( equiv-funext)))
( is-torsorial-path (X , f)))
( is-torsorial-Id (X , f)))
( λ Y ap (map-type-duality H))

emb-type-duality :
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/univalence.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ module _
is-contr-equiv'
( Σ (UU l) (λ X X = A))
( equiv-tot (λ X equiv-univalence))
( is-torsorial-path' A)
( is-torsorial-Id' A)
```

### Univalence for type families
Expand Down
4 changes: 2 additions & 2 deletions src/foundation/universal-property-identity-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ module _
( equiv-ev-refl x) ∘e
( equiv-inclusion-is-full-subtype
( Π-Prop A ∘ (is-equiv-Prop ∘_))
( fundamental-theorem-id (is-torsorial-path a))) ∘e
( fundamental-theorem-id (is-torsorial-Id a))) ∘e
( distributive-Π-Σ))))
( emb-tot
( λ x
Expand All @@ -145,7 +145,7 @@ module _
( λ _
is-injective-emb
( emb-fiber-Id-preunivalent-Id a)
( eq-is-contr (is-torsorial-path a))))
( eq-is-contr (is-torsorial-Id a))))
( λ _ ap Id)

module _
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/universal-property-truncation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ module _
( K x' x)
( Id-Truncated-Type C (g x') z)))) ∘e
( equiv-ev-pair)))
( is-torsorial-path (g x)))
( is-torsorial-Id (g x)))

is-truncation-is-truncation-ap :
is-truncation B f
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/weak-function-extensionality.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ abstract
( λ t eq-pair-Σ refl refl))
( weak-funext A
( λ x Σ (B x) (λ b f x = b))
( λ x is-torsorial-path (f x))))
( λ x is-torsorial-Id (f x))))
( λ g htpy-eq {g = g})
```

Expand Down
Loading

0 comments on commit 69abb58

Please sign in to comment.