Skip to content

Commit

Permalink
Characterize identity types of dependent sequential diagrams (#1149)
Browse files Browse the repository at this point in the history
Equivalences of dependent sequential diagrams characterize their
identity type
  • Loading branch information
VojtechStep authored Jun 1, 2024
1 parent 7ed6b79 commit 6e41d5c
Showing 1 changed file with 65 additions and 0 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,15 @@ open import elementary-number-theory.natural-numbers

open import foundation.commuting-squares-of-maps
open import foundation.dependent-pair-types
open import foundation.equality-dependent-function-types
open import foundation.equivalences
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopies
open import foundation.homotopy-induction
open import foundation.identity-types
open import foundation.structure-identity-principle
open import foundation.torsorial-type-families
open import foundation.univalence
open import foundation.universe-levels

open import synthetic-homotopy-theory.dependent-sequential-diagrams
Expand Down Expand Up @@ -196,3 +203,61 @@ module _
pr2 (equiv-hom-dependent-sequential-diagram is-equiv-map) =
coh-hom-dependent-sequential-diagram C h
```

### Characterization of identity types of dependent sequential diagrams

The type of equivalences of dependent sequential diagrams characterizes the
identity type of dependent sequential diagrams.

```agda
module _
{l1 l2 : Level} {A : sequential-diagram l1}
(B : dependent-sequential-diagram A l2)
where

equiv-eq-dependent-sequential-diagram :
(C : dependent-sequential-diagram A l2)
(B = C) equiv-dependent-sequential-diagram B C
equiv-eq-dependent-sequential-diagram .B refl =
id-equiv-dependent-sequential-diagram B

abstract
is-torsorial-equiv-dependent-sequential-diagram :
is-torsorial (equiv-dependent-sequential-diagram {l3 = l2} B)
is-torsorial-equiv-dependent-sequential-diagram =
is-torsorial-Eq-structure
( is-torsorial-Eq-Π
( λ n
is-torsorial-Eq-Π
( λ a
is-torsorial-equiv
( family-dependent-sequential-diagram B n a))))
( family-dependent-sequential-diagram B , λ n a id-equiv)
( is-torsorial-Eq-Π
( λ n
is-torsorial-Eq-Π
( λ a
is-torsorial-htpy (map-dependent-sequential-diagram B n a))))

is-equiv-equiv-eq-dependent-sequential-diagram :
(C : dependent-sequential-diagram A l2)
is-equiv (equiv-eq-dependent-sequential-diagram C)
is-equiv-equiv-eq-dependent-sequential-diagram =
fundamental-theorem-id
( is-torsorial-equiv-dependent-sequential-diagram)
( equiv-eq-dependent-sequential-diagram)

extensionality-dependent-sequential-diagram :
(C : dependent-sequential-diagram A l2)
(B = C) ≃ equiv-dependent-sequential-diagram B C
pr1 (extensionality-dependent-sequential-diagram C) =
equiv-eq-dependent-sequential-diagram C
pr2 (extensionality-dependent-sequential-diagram C) =
is-equiv-equiv-eq-dependent-sequential-diagram C

eq-equiv-dependent-sequential-diagram :
(C : dependent-sequential-diagram A l2)
equiv-dependent-sequential-diagram B C (B = C)
eq-equiv-dependent-sequential-diagram C =
map-inv-equiv (extensionality-dependent-sequential-diagram C)
```

0 comments on commit 6e41d5c

Please sign in to comment.