Skip to content

Commit

Permalink
review
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke committed Feb 19, 2024
1 parent fd73665 commit 76f1968
Show file tree
Hide file tree
Showing 5 changed files with 24 additions and 20 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ we call this the
There are a few different ways we can define `ap-binary`. We could define it by
pattern matching on both `p` and `q`, but this leads to restricted computational
behaviour. Instead, we define it as the upper concatenation in the Gray
interchange diagram
interchanger diagram

```text
ap (r ↦ f x r) q
Expand Down
32 changes: 18 additions & 14 deletions src/foundation/path-algebra.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,15 +174,15 @@ right-unit-law-vertical-concat-Id² :
vertical-concat-Id² α refl = α
right-unit-law-vertical-concat-Id² = right-unit

compute-left-horizontal-concat-Id² :
compute-left-refl-horizontal-concat-Id² :
{l : Level} {A : UU l} {x y z : A} {p : x = y} {u v : y = z} (γ : u = v)
horizontal-concat-Id² refl γ = left-whisker-concat p γ
compute-left-horizontal-concat-Id² = left-unit-ap-binary (_∙_)
compute-left-refl-horizontal-concat-Id² = left-unit-ap-binary (_∙_)

compute-right-horizontal-concat-Id² :
compute-right-refl-horizontal-concat-Id² :
{l : Level} {A : UU l} {x y z : A} {p q : x = y} (α : p = q) {u : y = z}
horizontal-concat-Id² α refl = right-whisker-concat α u
compute-right-horizontal-concat-Id² = right-unit-ap-binary (_∙_)
compute-right-refl-horizontal-concat-Id² = right-unit-ap-binary (_∙_)
```

Horizontal concatenation satisfies an additional "2-dimensional" unit law (on
Expand All @@ -202,7 +202,9 @@ module _
nat-sq-right-unit-Id² =
( ( horizontal-concat-Id² refl (inv (ap-id α))) ∙
( nat-htpy htpy-right-unit α)) ∙
( horizontal-concat-Id² (inv (compute-right-horizontal-concat-Id² α)) refl)
( horizontal-concat-Id²
( inv (compute-right-refl-horizontal-concat-Id² α))
( refl))

nat-sq-left-unit-Id² :
coherence-square-identifications
Expand All @@ -212,7 +214,7 @@ module _
( α)
nat-sq-left-unit-Id² =
( ( (inv (ap-id α) ∙ (nat-htpy htpy-left-unit α)) ∙ right-unit) ∙
( inv (compute-left-horizontal-concat-Id² α))) ∙
( inv (compute-left-refl-horizontal-concat-Id² α))) ∙
( inv right-unit)
```

Expand Down Expand Up @@ -289,20 +291,22 @@ inner-interchange-Id² :
: p = r) (γ : u = v)
( horizontal-concat-Id² β γ) =
( vertical-concat-Id² (left-whisker-concat p γ) (right-whisker-concat β v))
inner-interchange-Id² {u = refl} β refl = compute-right-horizontal-concat-Id² β
inner-interchange-Id² {u = refl} β refl =
compute-right-refl-horizontal-concat-Id² β

outer-interchange-Id² :
{l : Level} {A : UU l} {x y z : A} {p q : x = y} {u w : y = z}
: p = q) (δ : u = w)
( horizontal-concat-Id² α δ) =
( vertical-concat-Id² (right-whisker-concat α u) (left-whisker-concat q δ))
outer-interchange-Id² {p = refl} refl δ = compute-left-horizontal-concat-Id² δ
outer-interchange-Id² {p = refl} refl δ =
compute-left-refl-horizontal-concat-Id² δ

unit-law-α-interchange-Id² :
{l : Level} {A : UU l} {x y z : A} {p q : x = y} (α : p = q) (u : y = z)
( ( interchange-Id² α refl (refl {x = u}) refl) ∙
( right-unit ∙ compute-right-horizontal-concat-Id² α)) =
( ( compute-right-horizontal-concat-Id² (α ∙ refl)) ∙
( right-unit ∙ compute-right-refl-horizontal-concat-Id² α)) =
( ( compute-right-refl-horizontal-concat-Id² (α ∙ refl)) ∙
( ap (λ s right-whisker-concat s u) right-unit))
unit-law-α-interchange-Id² refl _ = refl

Expand All @@ -314,8 +318,8 @@ unit-law-β-interchange-Id² refl _ = refl
unit-law-γ-interchange-Id² :
{l : Level} {A : UU l} {x y z : A} (p : x = y) {u v : y = z} (γ : u = v)
( ( interchange-Id² (refl {x = p}) refl γ refl) ∙
( right-unit ∙ compute-left-horizontal-concat-Id² γ)) =
( ( compute-left-horizontal-concat-Id² (γ ∙ refl)) ∙
( right-unit ∙ compute-left-refl-horizontal-concat-Id² γ)) =
( ( compute-left-refl-horizontal-concat-Id² (γ ∙ refl)) ∙
( ap (left-whisker-concat p) right-unit))
unit-law-γ-interchange-Id² _ refl = refl

Expand Down Expand Up @@ -387,13 +391,13 @@ left-unit-law-y-concat-Id³ :
{l : Level} {A : UU l} {x y : A} {p q r : x = y} {α : p = q} {γ δ : q = r}
: γ = δ}
y-concat-Id³ (refl {x = α}) τ = left-whisker-concat α τ
left-unit-law-y-concat-Id³ {τ = τ} = compute-left-horizontal-concat-Id² τ
left-unit-law-y-concat-Id³ {τ = τ} = compute-left-refl-horizontal-concat-Id² τ

right-unit-law-y-concat-Id³ :
{l : Level} {A : UU l} {x y : A} {p q r : x = y} {α β : p = q} {γ : q = r}
: α = β}
y-concat-Id³ σ (refl {x = γ}) = right-whisker-concat σ γ
right-unit-law-y-concat-Id³ {σ = σ} = compute-right-horizontal-concat-Id² σ
right-unit-law-y-concat-Id³ {σ = σ} = compute-right-refl-horizontal-concat-Id² σ

left-unit-law-z-concat-Id³ :
{l : Level} {A : UU l} {x y z : A} {p q : x = y} {u v : y = z}
Expand Down
2 changes: 1 addition & 1 deletion src/foundation/yoneda-identity-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -709,7 +709,7 @@ module _
### Action of binary functions on Yoneda identifications

We obtain an action of binary functions on Yoneda identifications that computes
on both arguments using one of the two sides in the Gray interchange diagram
on both arguments using one of the two sides in the Gray interchanger diagram

```text
ap (r ↦ f x r) q
Expand Down
4 changes: 2 additions & 2 deletions src/synthetic-homotopy-theory/double-loop-spaces.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ module _
{a : A} {α : type-Ω² a}
horizontal-concat-Ω² refl-Ω² α = α
left-unit-law-horizontal-concat-Ω² {α = α} =
compute-left-horizontal-concat-Id² α ∙ ap-id α
compute-left-refl-horizontal-concat-Id² α ∙ ap-id α

naturality-right-unit :
{x y : A} {p q : x = y} (α : p = q)
Expand All @@ -99,7 +99,7 @@ module _
right-unit-law-horizontal-concat-Ω² :
{a : A} {α : type-Ω² a} horizontal-concat-Ω² α refl-Ω² = α
right-unit-law-horizontal-concat-Ω² {α = α} =
compute-right-horizontal-concat-Id² α ∙ naturality-right-unit-Ω² α
compute-right-refl-horizontal-concat-Id² α ∙ naturality-right-unit-Ω² α

left-unit-law-left-whisker-Ω² :
{a : A} (α : type-Ω² a) left-whisker-concat (refl-Ω (A , a)) α = α
Expand Down
4 changes: 2 additions & 2 deletions src/synthetic-homotopy-theory/triple-loop-spaces.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ left-unit-law-z-concat-Ω³ :
left-unit-law-z-concat-Ω³ α =
( left-unit-law-z-concat-Id³ α) ∙
( ( inv right-unit) ∙
( ( inv-nat-htpy (λ ω compute-left-horizontal-concat-Id² ω) α) ∙
( ( inv-nat-htpy (λ ω compute-left-refl-horizontal-concat-Id² ω) α) ∙
( ( inv right-unit) ∙
( ( inv-nat-htpy ap-id α) ∙
( ap-id α)))))
Expand All @@ -129,7 +129,7 @@ right-unit-law-z-concat-Ω³ α =
-}
{-
( ( inv right-unit) ∙
( ( inv-nat-htpy (λ ω → compute-right-horizontal-concat-Id² ω) α) ∙
( ( inv-nat-htpy (λ ω → compute-right-refl-horizontal-concat-Id² ω) α) ∙
( left-unit ∙
( ( inv right-unit) ∙
( ( inv-nat-htpy
Expand Down

0 comments on commit 76f1968

Please sign in to comment.