Skip to content

Commit

Permalink
reversing naturality (#856)
Browse files Browse the repository at this point in the history
  • Loading branch information
EgbertRijke authored Oct 17, 2023
1 parent 786f98a commit 8ebe42b
Show file tree
Hide file tree
Showing 4 changed files with 154 additions and 150 deletions.
261 changes: 132 additions & 129 deletions src/category-theory/adjunctions-large-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -427,77 +427,79 @@ module _
( left-adjoint-Adjunction-Large-Precategory FG))
( hom-unit-Adjunction-Large-Precategory)
naturality-unit-Adjunction-Large-Precategory {X = X} {Y} f =
( inv
( left-unit-law-comp-hom-Large-Precategory C
( comp-hom-Large-Precategory C
( hom-unit-Adjunction-Large-Precategory
( Y))
( f)))) ∙
( ap
( comp-hom-Large-Precategory' C
( comp-hom-Large-Precategory C
( hom-unit-Adjunction-Large-Precategory
( Y))
( f)))
( inv
( preserves-id-right-adjoint-Adjunction-Large-Precategory
( C)
( D)
( FG)
( obj-left-adjoint-Adjunction-Large-Precategory C D FG Y)))) ∙
( inv
( associative-comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG
( id-hom-Large-Precategory D))
( map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory
C D FG Y
( obj-left-adjoint-Adjunction-Large-Precategory C D FG Y)
( id-hom-Large-Precategory D))
( f))) ∙
( inv
( naturality-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory
C D FG f
( id-hom-Large-Precategory D)
( id-hom-Large-Precategory D))) ∙
( ap
( map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG X
( obj-left-adjoint-Adjunction-Large-Precategory C D FG Y))
( ( associative-comp-hom-Large-Precategory D
( id-hom-Large-Precategory D)
( id-hom-Large-Precategory D)
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)) ∙
( left-unit-law-comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D
( id-hom-Large-Precategory D)
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f))) ∙
( left-unit-law-comp-hom-Large-Precategory D
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)) ∙
inv
( ( inv
( left-unit-law-comp-hom-Large-Precategory C
( comp-hom-Large-Precategory C
( hom-unit-Adjunction-Large-Precategory
( Y))
( f)))) ∙
( ap
( comp-hom-Large-Precategory' C
( comp-hom-Large-Precategory C
( hom-unit-Adjunction-Large-Precategory
( Y))
( f)))
( inv
( preserves-id-right-adjoint-Adjunction-Large-Precategory
( C)
( D)
( FG)
( obj-left-adjoint-Adjunction-Large-Precategory C D FG Y)))) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory D
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f))) ∙
( associative-comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG
( id-hom-Large-Precategory D))
( map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory
C D FG Y
( obj-left-adjoint-Adjunction-Large-Precategory C D FG Y)
( id-hom-Large-Precategory D))
( f))) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory D)))) ∙
( naturality-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory
C D FG f
( id-hom-Large-Precategory D)
( id-hom-Large-Precategory D))) ∙
( ap
( comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory D)))
( inv
( preserves-id-left-adjoint-Adjunction-Large-Precategory
C D FG X)))) ∙
( naturality-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( id-hom-Large-Precategory C)
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory D)) ∙
( right-unit-law-comp-hom-Large-Precategory C
( comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f))
( hom-unit-Adjunction-Large-Precategory
( X)))))
( map-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG X
( obj-left-adjoint-Adjunction-Large-Precategory C D FG Y))
( ( associative-comp-hom-Large-Precategory D
( id-hom-Large-Precategory D)
( id-hom-Large-Precategory D)
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)) ∙
( left-unit-law-comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D
( id-hom-Large-Precategory D)
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f))) ∙
( left-unit-law-comp-hom-Large-Precategory D
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory D
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f))) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory D)))) ∙
( ap
( comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory D)))
( inv
( preserves-id-left-adjoint-Adjunction-Large-Precategory
C D FG X)))) ∙
( naturality-inv-equiv-is-adjoint-pair-Adjunction-Large-Precategory
C D FG
( id-hom-Large-Precategory C)
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory D)) ∙
( right-unit-law-comp-hom-Large-Precategory C
( comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG
( hom-left-adjoint-Adjunction-Large-Precategory C D FG f))
( hom-unit-Adjunction-Large-Precategory
( X))))))

unit-Adjunction-Large-Precategory :
natural-transformation-Large-Precategory C C
Expand Down Expand Up @@ -545,68 +547,69 @@ module _
( id-functor-Large-Precategory D)
( hom-counit-Adjunction-Large-Precategory)
naturality-counit-Adjunction-Large-Precategory {X = X} {Y = Y} f =
( inv
( left-unit-law-comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D
( hom-counit-Adjunction-Large-Precategory
inv
( ( inv
( left-unit-law-comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D
( hom-counit-Adjunction-Large-Precategory
( Y))
( hom-left-adjoint-Adjunction-Large-Precategory C D FG
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f))))) ∙
( inv
( associative-comp-hom-Large-Precategory D
( id-hom-Large-Precategory D)
( map-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( obj-right-adjoint-Adjunction-Large-Precategory C D FG Y)
( Y)
( id-hom-Large-Precategory C))
( hom-left-adjoint-Adjunction-Large-Precategory C D FG
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f)))) ∙
( inv
( naturality-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory D)
( id-hom-Large-Precategory C))) ∙
( ap
( map-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( obj-right-adjoint-Adjunction-Large-Precategory C D FG X)
( Y))
( hom-left-adjoint-Adjunction-Large-Precategory C D FG
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f))))) ∙
( inv
( associative-comp-hom-Large-Precategory D
( id-hom-Large-Precategory D)
( map-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( obj-right-adjoint-Adjunction-Large-Precategory C D FG Y)
( Y)
( id-hom-Large-Precategory C))
( hom-left-adjoint-Adjunction-Large-Precategory C D FG
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f)))) ∙
( inv
( naturality-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory D)
( id-hom-Large-Precategory C))) ∙
( ap
( map-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( obj-right-adjoint-Adjunction-Large-Precategory C D FG X)
( Y))
( ( ap
( comp-hom-Large-Precategory' C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f))
( ( right-unit-law-comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG
( id-hom-Large-Precategory D))) ∙
( preserves-id-right-adjoint-Adjunction-Large-Precategory
C D FG Y))) ∙
( left-unit-law-comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f)) ∙
( ( inv
( right-unit-law-comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f))) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory C
( comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory C)))))) ∙
( naturality-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( id-hom-Large-Precategory C)
( f)
( id-hom-Large-Precategory C)) ∙
( ap
( comp-hom-Large-Precategory
( D)
( comp-hom-Large-Precategory D f
( hom-counit-Adjunction-Large-Precategory
( X))))
( preserves-id-left-adjoint-Adjunction-Large-Precategory
( C)
( D)
( FG)
( obj-right-adjoint-Adjunction-Large-Precategory C D FG X))) ∙
( right-unit-law-comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D f
( hom-counit-Adjunction-Large-Precategory
( X)))))
( ( ap
( comp-hom-Large-Precategory' C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f))
( ( right-unit-law-comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG
( id-hom-Large-Precategory D))) ∙
( preserves-id-right-adjoint-Adjunction-Large-Precategory
C D FG Y))) ∙
( left-unit-law-comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f)) ∙
( ( inv
( right-unit-law-comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f))) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory C
( comp-hom-Large-Precategory C
( hom-right-adjoint-Adjunction-Large-Precategory C D FG f)
( id-hom-Large-Precategory C)))))) ∙
( naturality-equiv-is-adjoint-pair-Adjunction-Large-Precategory C D FG
( id-hom-Large-Precategory C)
( f)
( id-hom-Large-Precategory C)) ∙
( ap
( comp-hom-Large-Precategory
( D)
( comp-hom-Large-Precategory D f
( hom-counit-Adjunction-Large-Precategory
( X))))
( preserves-id-left-adjoint-Adjunction-Large-Precategory
( C)
( D)
( FG)
( obj-right-adjoint-Adjunction-Large-Precategory C D FG X))) ∙
( right-unit-law-comp-hom-Large-Precategory D
( comp-hom-Large-Precategory D f
( hom-counit-Adjunction-Large-Precategory
( X))))))

counit-Adjunction-Large-Precategory :
natural-transformation-Large-Precategory D D
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -60,12 +60,12 @@ module _
{ Y : obj-Large-Precategory C l2}
( f : hom-Large-Precategory C X Y)
coherence-square-hom-Large-Precategory D
( hom-functor-Large-Precategory F f)
( hom-iso-Large-Precategory D
( iso-natural-isomorphism-Large-Precategory X))
( hom-functor-Large-Precategory F f)
( hom-functor-Large-Precategory G f)
( hom-iso-Large-Precategory D
( iso-natural-isomorphism-Large-Precategory Y))
( hom-functor-Large-Precategory G f)

open natural-isomorphism-Large-Precategory public

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -55,10 +55,10 @@ module _
{Y : obj-Large-Precategory C l2}
(f : hom-Large-Precategory C X Y)
coherence-square-hom-Large-Precategory D
( τ X)
( hom-functor-Large-Precategory F f)
( hom-functor-Large-Precategory G f)
( τ X)
( τ Y)
( hom-functor-Large-Precategory G f)

record natural-transformation-Large-Precategory : UUω
where
Expand Down Expand Up @@ -97,10 +97,10 @@ module _
naturality-family-of-morphisms-functor-Large-Precategory C D F F
hom-id-natural-transformation-Large-Precategory
naturality-id-natural-transformation-Large-Precategory f =
( left-unit-law-comp-hom-Large-Precategory D
( hom-functor-Large-Precategory F f)) ∙
( right-unit-law-comp-hom-Large-Precategory D
( hom-functor-Large-Precategory F f)) ∙
( inv
( right-unit-law-comp-hom-Large-Precategory D
( left-unit-law-comp-hom-Large-Precategory D
( hom-functor-Large-Precategory F f)))

id-natural-transformation-Large-Precategory :
Expand Down Expand Up @@ -139,27 +139,28 @@ module _
naturality-family-of-morphisms-functor-Large-Precategory C D F H
hom-comp-natural-transformation-Large-Precategory
naturality-comp-natural-transformation-Large-Precategory {X = X} {Y} f =
inv
( associative-comp-hom-Large-Precategory D
( hom-functor-Large-Precategory H f)
( hom-natural-transformation-Large-Precategory τ X)
( hom-natural-transformation-Large-Precategory σ X)) ∙
( ap
( comp-hom-Large-Precategory' D
( hom-natural-transformation-Large-Precategory σ X))
( naturality-natural-transformation-Large-Precategory τ f)) ∙
( associative-comp-hom-Large-Precategory D
( hom-natural-transformation-Large-Precategory τ Y)
( hom-natural-transformation-Large-Precategory σ Y)
( hom-functor-Large-Precategory F f)) ∙
( hom-functor-Large-Precategory G f)
( hom-natural-transformation-Large-Precategory σ X)) ∙
( ap
( comp-hom-Large-Precategory D
( hom-natural-transformation-Large-Precategory τ Y))
( naturality-natural-transformation-Large-Precategory σ f)) ∙
( inv
( associative-comp-hom-Large-Precategory D
(associative-comp-hom-Large-Precategory D
( hom-natural-transformation-Large-Precategory τ Y)
( hom-functor-Large-Precategory G f)
( hom-natural-transformation-Large-Precategory σ X))) ∙
( ap
( comp-hom-Large-Precategory' D
( hom-natural-transformation-Large-Precategory σ X))
( naturality-natural-transformation-Large-Precategory τ f)) ∙
( associative-comp-hom-Large-Precategory D
( hom-functor-Large-Precategory H f)
( hom-natural-transformation-Large-Precategory τ X)
( hom-natural-transformation-Large-Precategory σ X))
( hom-natural-transformation-Large-Precategory σ Y)
( hom-functor-Large-Precategory F f)))

comp-natural-transformation-Large-Precategory :
natural-transformation-Large-Precategory C D F H
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ module _
( representable-functor-Large-Precategory C b)
( hom-representable-natural-transformation-Large-Precategory)
naturality-representable-natural-transformation-Large-Precategory h =
eq-htpy (λ g associative-comp-hom-Large-Precategory C h g f)
inv (eq-htpy (λ g associative-comp-hom-Large-Precategory C h g f))

representable-natural-transformation-Large-Precategory :
natural-transformation-Large-Precategory C Set-Large-Precategory
Expand Down

0 comments on commit 8ebe42b

Please sign in to comment.