Skip to content

Commit

Permalink
Refactor library to use λ where (#809)
Browse files Browse the repository at this point in the history
Co-authored-by: Egbert Rijke <[email protected]>
  • Loading branch information
fredrik-bakke and EgbertRijke authored Oct 9, 2023
1 parent d62f49e commit a29e25d
Show file tree
Hide file tree
Showing 85 changed files with 2,082 additions and 1,920 deletions.
43 changes: 43 additions & 0 deletions CODINGSTYLE.md
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,49 @@ strategic endeavour to ensure the longevity, vitality, and success of the
a = construction-of-a
```

- **Lambda expressions**: When a lambda expression appears as the argument of a
function, we always wrap it in parentheses. We do this even if it is the last
argument and thus isn't strictly required to be parenthesized. Note that in
some rare cases, a lambda expression might appear at the top level. In this
case we don't require the lambda expression to be parenthesized.

There are multiple syntaxes for writing lambda expressions in Agda. Generally,
you have the following options:

1. Regular lambda expressions without pattern matching:

```agda
λ x → x
```
2. Pattern matching lambda expressions on record types:
```agda
λ (x , y) → x
```
This syntax only applies to record types with $η$-equality.
3. Pattern matching lambda expressions with `{...}`:
```agda
λ { (inl x) → ... ; (inr y) → ...}
```
4. Pattern matching lambda expressions using the `where` keyword:
```agda
λ where refl → refl
```
All four syntaxes are in use in the library, although when possible we try to
avoid general pattern matching lambdas, i.e. syntaxes 3 and 4. If need be, we
prefer pattern matching using the `where` keyword over the `{...}` syntax.
Note that whenever syntax 3 or 4 appear in as part of a construction, the
definition should be marked as `abstract`. If computation is necessary for a
definition that has these syntaxes in them, this suggests the relevant lambda
expression(s) deserve to be factored out as separate definitions.
## Code comments
Given that the files in `agda-unimath` are literate Agda markdown files,
Expand Down
5 changes: 4 additions & 1 deletion scripts/blank_line_conventions.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
open_tag_pattern = re.compile(r'^```\S+\n', flags=re.MULTILINE)
close_tag_pattern = re.compile(r'\n```$', flags=re.MULTILINE)


if __name__ == '__main__':

status = 0
Expand All @@ -23,6 +22,10 @@
output = re.sub(r'[ \t]+$', '', inputText, flags=re.MULTILINE)
output = re.sub(r'\n(\s*\n){2,}', '\n\n', output)

# Remove blank lines before a `where`
output = re.sub(r'\n(\s*\n)+(\s+)where(\s|$)',
r'\n\2where\3', output, flags=re.MULTILINE)

# # Add blank line after `module ... where`
# output = re.sub(r'(^([ \t]*)module[\s({][^\n]*\n(\2\s[^\n]*\n)*\2\s([^\n]*[\s)}])?where)\s*\n(?=\s*[^\n\s])', r'\1\n\n',
# output, flags=re.MULTILINE)
Expand Down
6 changes: 3 additions & 3 deletions src/category-theory/category-of-functors.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -82,9 +82,9 @@ module _
( ( equiv-iso-functor-natural-isomorphism-Precategory C D F G) ∘e
( extensionality-functor-is-category-Precategory
C D is-category-D F G))
( λ { refl
compute-iso-functor-natural-isomorphism-eq-Precategory
C D F G refl})
( λ where
refl
compute-iso-functor-natural-isomorphism-eq-Precategory C D F G refl)
```

## Definitions
Expand Down
10 changes: 5 additions & 5 deletions src/category-theory/category-of-maps-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,8 @@ module _
( ( distributive-Π-Σ) ∘e
( equiv-Π-equiv-family
( λ x
extensionality-obj-Category (D , is-category-D)
extensionality-obj-Category
( D , is-category-D)
( obj-map-Precategory C D F x)
( obj-map-Precategory C D G x))))
( λ K
Expand Down Expand Up @@ -113,10 +114,9 @@ module _
is-equiv-htpy-equiv
( ( equiv-iso-map-natural-isomorphism-map-Precategory C D F G) ∘e
( extensionality-map-is-category-Precategory C D is-category-D F G))
( λ
{ refl
compute-iso-map-natural-isomorphism-map-eq-Precategory
C D F G refl})
( λ where
refl
compute-iso-map-natural-isomorphism-map-eq-Precategory C D F G refl)
```

## Definitions
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ module _
equiv-Π-equiv-family
( λ i extensionality-obj-Category (C i) (x i) (y i)) ∘e
equiv-funext)
( λ {refl refl})
( λ where refl refl)

Π-Category : Category (l1 ⊔ l2) (l1 ⊔ l3)
pr1 Π-Category = Π-Precategory I (precategory-Category ∘ C)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ module _
( equiv-Π-equiv-family
( λ i extensionality-obj-Large-Category (C i) (x i) (y i))) ∘e
( equiv-funext))
( λ {refl refl})
( λ where refl refl)

Π-Large-Category : Large-Category (λ l2 l1 ⊔ α l2) (λ l2 l3 l1 ⊔ β l2 l3)
large-precategory-Large-Category
Expand Down
43 changes: 23 additions & 20 deletions src/commutative-algebra/products-ideals-commutative-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -170,25 +170,28 @@ module _
(S : subset-Commutative-Ring l2 A) (T : subset-Commutative-Ring l3 A)
where

forward-inclusion-preserves-product-ideal-subset-Commutative-Ring :
leq-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A (product-subset-Commutative-Ring A S T))
( product-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A S)
( ideal-subset-Commutative-Ring A T))
forward-inclusion-preserves-product-ideal-subset-Commutative-Ring =
is-ideal-generated-by-subset-ideal-subset-Commutative-Ring A
( product-subset-Commutative-Ring A S T)
( product-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A S)
( ideal-subset-Commutative-Ring A T))
( λ x H
apply-universal-property-trunc-Prop H
( subset-product-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A S)
( ideal-subset-Commutative-Ring A T)
( x))
( λ { (s , t , refl)
abstract
forward-inclusion-preserves-product-ideal-subset-Commutative-Ring :
leq-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A
( product-subset-Commutative-Ring A S T))
( product-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A S)
( ideal-subset-Commutative-Ring A T))
forward-inclusion-preserves-product-ideal-subset-Commutative-Ring =
is-ideal-generated-by-subset-ideal-subset-Commutative-Ring A
( product-subset-Commutative-Ring A S T)
( product-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A S)
( ideal-subset-Commutative-Ring A T))
( λ x H
apply-universal-property-trunc-Prop H
( subset-product-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A S)
( ideal-subset-Commutative-Ring A T)
( x))
( λ where
( s , t , refl)
contains-product-product-ideal-Commutative-Ring A
( ideal-subset-Commutative-Ring A S)
( ideal-subset-Commutative-Ring A T)
Expand All @@ -199,7 +202,7 @@ module _
( pr2 s))
( contains-subset-ideal-subset-Commutative-Ring A T
( pr1 t)
( pr2 t))}))
( pr2 t))))

left-backward-inclusion-preserves-product-ideal-subset-Commutative-Ring :
{x s y : type-Commutative-Ring A}
Expand Down
8 changes: 4 additions & 4 deletions src/elementary-number-theory/dirichlet-convolution.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,8 +39,8 @@ module _
bounded-sum-arithmetic-function-Ring R
( succ-ℕ n)
( λ x div-ℕ-Decidable-Prop (pr1 x) (succ-ℕ n) (pr2 x))
( λ { (pair x K) H
mul-Ring R
( f ( pair x K))
( g ( quotient-div-nonzero-ℕ x (succ-nonzero-ℕ' n) H))})
( λ (x , K) H
mul-Ring R
( f ( pair x K))
( g ( quotient-div-nonzero-ℕ x (succ-nonzero-ℕ' n) H)))
```
6 changes: 3 additions & 3 deletions src/elementary-number-theory/divisibility-integers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -482,7 +482,7 @@ is-zero-sim-unit-ℤ {x} {y} H p =
( λ g g (inv (β g) ∙ (ap ((u g) *ℤ_) p ∙ right-zero-law-mul-ℤ (u g))))
where
K : is-nonzero-ℤ y presim-unit-ℤ x y
K g = H (λ {(pair u v) g v})
K g = H (λ (u , v) g v)
u : is-nonzero-ℤ y
u g = pr1 (pr1 (K g))
v : is-nonzero-ℤ y
Expand Down Expand Up @@ -547,8 +547,8 @@ transitive-presim-unit-ℤ x y z (pair (pair v K) q) (pair (pair u H) p) =
transitive-sim-unit-ℤ : is-transitive sim-unit-ℤ
transitive-sim-unit-ℤ x y z K H f =
transitive-presim-unit-ℤ x y z
( K (λ {(p , q) f (is-zero-sim-unit-ℤ' H p , q)}))
( H (λ {(p , q) f (p , is-zero-sim-unit-ℤ K q)}))
( K (λ (p , q) f (is-zero-sim-unit-ℤ' H p , q)))
( H (λ (p , q) f (p , is-zero-sim-unit-ℤ K q)))
```

### `sim-unit-ℤ x y` holds if and only if `x|y` and `y|x`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -307,14 +307,15 @@ is-minimal-least-nontrivial-divisor-ℕ n H x K d =
### The least nontrivial divisor of a number `> 1` is nonzero

```agda
is-nonzero-least-nontrivial-divisor-ℕ :
(n : ℕ) (H : le-ℕ 1 n) is-nonzero-ℕ (nat-least-nontrivial-divisor-ℕ n H)
is-nonzero-least-nontrivial-divisor-ℕ n H =
is-nonzero-div-ℕ
( nat-least-nontrivial-divisor-ℕ n H)
( n)
( div-least-nontrivial-divisor-ℕ n H)
( λ { refl H})
abstract
is-nonzero-least-nontrivial-divisor-ℕ :
(n : ℕ) (H : le-ℕ 1 n) is-nonzero-ℕ (nat-least-nontrivial-divisor-ℕ n H)
is-nonzero-least-nontrivial-divisor-ℕ n H =
is-nonzero-div-ℕ
( nat-least-nontrivial-divisor-ℕ n H)
( n)
( div-least-nontrivial-divisor-ℕ n H)
( λ where refl H)
```

### The least nontrivial divisor of a number `> 1` is prime
Expand Down
84 changes: 43 additions & 41 deletions src/elementary-number-theory/powers-of-two.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,49 +55,51 @@ is-nonzero-pair-expansion u v =
( is-nonzero-exp-ℕ 2 u is-nonzero-two-ℕ)
( is-nonzero-succ-ℕ _)

has-pair-expansion-is-even-or-odd :
(n : ℕ) is-even-ℕ n + is-odd-ℕ n pair-expansion n
has-pair-expansion-is-even-or-odd n =
strong-ind-ℕ
( λ m (is-even-ℕ m + is-odd-ℕ m) (pair-expansion m))
( λ x (0 , 0) , refl)
( λ k f
( λ {
( inl x)
( let s = has-odd-expansion-is-odd k (is-odd-is-even-succ-ℕ k x)
in pair
( 0 , (succ-ℕ (pr1 s)))
( ( ap ((succ-ℕ ∘ succ-ℕ) ∘ succ-ℕ) (left-unit-law-add-ℕ _)) ∙
( ( ap (succ-ℕ ∘ succ-ℕ) (pr2 s))))) ;
( inr x)
( let e : is-even-ℕ k
e = is-even-is-odd-succ-ℕ k x

t : (pr1 e) ≤-ℕ k
t = leq-quotient-div-ℕ' 2 k is-nonzero-two-ℕ e

s : (pair-expansion (pr1 e))
s = f (pr1 e) t (is-decidable-is-even-ℕ (pr1 e))
in
pair
( succ-ℕ (pr1 (pr1 s)) , pr2 (pr1 s))
( ( ap
( _*ℕ (succ-ℕ ((pr2 (pr1 s)) *ℕ 2)))
( commutative-mul-ℕ (exp-ℕ 2 (pr1 (pr1 s))) 2)) ∙
( ( associative-mul-ℕ 2
( exp-ℕ 2 (pr1 (pr1 s)))
( succ-ℕ ((pr2 (pr1 s)) *ℕ 2))) ∙
( ( ap (2 *ℕ_) (pr2 s)) ∙
( ( ap succ-ℕ
( left-successor-law-add-ℕ (0 +ℕ (pr1 e)) (pr1 e))) ∙
( ( ap
( succ-ℕ ∘ succ-ℕ)
( ap (_+ℕ (pr1 e)) (left-unit-law-add-ℕ (pr1 e)))) ∙
abstract
has-pair-expansion-is-even-or-odd :
(n : ℕ) is-even-ℕ n + is-odd-ℕ n pair-expansion n
has-pair-expansion-is-even-or-odd n =
strong-ind-ℕ
( λ m (is-even-ℕ m + is-odd-ℕ m) (pair-expansion m))
( λ x (0 , 0) , refl)
( λ k f
( λ where
( inl x)
( let s = has-odd-expansion-is-odd k (is-odd-is-even-succ-ℕ k x)
in
pair
( 0 , (succ-ℕ (pr1 s)))
( ( ap ((succ-ℕ ∘ succ-ℕ) ∘ succ-ℕ) (left-unit-law-add-ℕ _)) ∙
( ( ap (succ-ℕ ∘ succ-ℕ) (pr2 s)))))
( inr x)
( let e : is-even-ℕ k
e = is-even-is-odd-succ-ℕ k x

t : (pr1 e) ≤-ℕ k
t = leq-quotient-div-ℕ' 2 k is-nonzero-two-ℕ e

s : (pair-expansion (pr1 e))
s = f (pr1 e) t (is-decidable-is-even-ℕ (pr1 e))
in
pair
( succ-ℕ (pr1 (pr1 s)) , pr2 (pr1 s))
( ( ap
( _*ℕ (succ-ℕ ((pr2 (pr1 s)) *ℕ 2)))
( commutative-mul-ℕ (exp-ℕ 2 (pr1 (pr1 s))) 2)) ∙
( ( associative-mul-ℕ 2
( exp-ℕ 2 (pr1 (pr1 s)))
( succ-ℕ ((pr2 (pr1 s)) *ℕ 2))) ∙
( ( ap (2 *ℕ_) (pr2 s)) ∙
( ( ap succ-ℕ
( left-successor-law-add-ℕ (0 +ℕ (pr1 e)) (pr1 e))) ∙
( ( ap
( succ-ℕ ∘ succ-ℕ)
( inv (right-two-law-mul-ℕ (pr1 e)))) ∙
( ( ap (succ-ℕ ∘ succ-ℕ) (pr2 e))))))))))}))
( n)
( ap (_+ℕ (pr1 e)) (left-unit-law-add-ℕ (pr1 e)))) ∙
( ( ap
( succ-ℕ ∘ succ-ℕ)
( inv (right-two-law-mul-ℕ (pr1 e)))) ∙
( ( ap (succ-ℕ ∘ succ-ℕ) (pr2 e))))))))))))
( n)

has-pair-expansion : (n : ℕ) pair-expansion n
has-pair-expansion n =
Expand Down
10 changes: 5 additions & 5 deletions src/finite-group-theory/concrete-quaternion-group.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,11 @@ open import elementary-number-theory.natural-numbers
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.isolated-points
open import foundation.isolated-elements
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import univalent-combinatorics.complements-isolated-points
open import univalent-combinatorics.complements-isolated-elements
open import univalent-combinatorics.cubes
open import univalent-combinatorics.equality-finite-types
open import univalent-combinatorics.equivalences-cubes
Expand All @@ -37,7 +37,7 @@ equiv-face-cube :
( map-axis-equiv-cube (succ-ℕ k) X Y e d a))
equiv-face-cube k X Y e d a =
pair
( equiv-complement-point-UU-Fin k
( equiv-complement-element-UU-Fin k
( pair (dim-cube-UU-Fin (succ-ℕ k) X) d)
( pair
( dim-cube-UU-Fin (succ-ℕ k) Y)
Expand All @@ -48,7 +48,7 @@ equiv-face-cube k X Y e d a =
( equiv-tr
( axis-cube (succ-ℕ k) Y)
( inv
( natural-inclusion-equiv-complement-isolated-point
( natural-inclusion-equiv-complement-isolated-element
( dim-equiv-cube (succ-ℕ k) X Y e)
( pair d
( λ z
Expand All @@ -68,7 +68,7 @@ equiv-face-cube k X Y e d a =
( refl)
( d')))) ∘e
( axis-equiv-cube (succ-ℕ k) X Y e
( inclusion-complement-point-UU-Fin k
( inclusion-complement-element-UU-Fin k
( pair (dim-cube-UU-Fin (succ-ℕ k) X) d) d')))

cube-with-labeled-faces :
Expand Down
Loading

0 comments on commit a29e25d

Please sign in to comment.