-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b4683ee
commit b14bb4c
Showing
9 changed files
with
223 additions
and
153 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# Dependent products of pullbacks | ||
|
||
```agda | ||
module foundation.dependent-products-pullbacks where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import foundation.action-on-identifications-functions | ||
open import foundation.cones-over-cospan-diagrams | ||
open import foundation.coproduct-types | ||
open import foundation.dependent-pair-types | ||
open import foundation.equality-coproduct-types | ||
open import foundation.function-extensionality | ||
open import foundation.functoriality-coproduct-types | ||
open import foundation.functoriality-dependent-function-types | ||
open import foundation.functoriality-function-types | ||
open import foundation.identity-types | ||
open import foundation.universe-levels | ||
open import foundation.whiskering-homotopies-composition | ||
|
||
open import foundation-core.equality-dependent-pair-types | ||
open import foundation-core.equivalences | ||
open import foundation-core.function-types | ||
open import foundation-core.functoriality-dependent-pair-types | ||
open import foundation-core.homotopies | ||
open import foundation-core.postcomposition-functions | ||
open import foundation-core.pullbacks | ||
open import foundation-core.retractions | ||
open import foundation-core.sections | ||
open import foundation-core.standard-pullbacks | ||
open import foundation-core.universal-property-pullbacks | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
Given a family of pullback squares, their dependent product is again a pullback | ||
square. | ||
|
||
## Definitions | ||
|
||
### Dependent products of cones | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 l5 : Level} {I : UU l1} | ||
{A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} | ||
(f : (i : I) → A i → X i) (g : (i : I) → B i → X i) | ||
(c : (i : I) → cone (f i) (g i) (C i)) | ||
where | ||
|
||
cone-Π : cone (map-Π f) (map-Π g) ((i : I) → C i) | ||
pr1 cone-Π = map-Π (λ i → pr1 (c i)) | ||
pr1 (pr2 cone-Π) = map-Π (λ i → pr1 (pr2 (c i))) | ||
pr2 (pr2 cone-Π) = htpy-map-Π (λ i → pr2 (pr2 (c i))) | ||
``` | ||
|
||
## Properties | ||
|
||
### Computing the standard pullback of a dependent product | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} {I : UU l1} | ||
{A : I → UU l2} {B : I → UU l3} {X : I → UU l4} | ||
(f : (i : I) → A i → X i) (g : (i : I) → B i → X i) | ||
where | ||
|
||
map-standard-pullback-Π : | ||
standard-pullback (map-Π f) (map-Π g) → | ||
(i : I) → standard-pullback (f i) (g i) | ||
pr1 (map-standard-pullback-Π (α , β , γ) i) = α i | ||
pr1 (pr2 (map-standard-pullback-Π (α , β , γ) i)) = β i | ||
pr2 (pr2 (map-standard-pullback-Π (α , β , γ) i)) = htpy-eq γ i | ||
|
||
map-inv-standard-pullback-Π : | ||
((i : I) → standard-pullback (f i) (g i)) → | ||
standard-pullback (map-Π f) (map-Π g) | ||
pr1 (map-inv-standard-pullback-Π h) i = pr1 (h i) | ||
pr1 (pr2 (map-inv-standard-pullback-Π h)) i = pr1 (pr2 (h i)) | ||
pr2 (pr2 (map-inv-standard-pullback-Π h)) = eq-htpy (λ i → pr2 (pr2 (h i))) | ||
|
||
abstract | ||
is-section-map-inv-standard-pullback-Π : | ||
is-section (map-standard-pullback-Π) (map-inv-standard-pullback-Π) | ||
is-section-map-inv-standard-pullback-Π h = | ||
eq-htpy | ||
( λ i → | ||
map-extensionality-standard-pullback (f i) (g i) refl refl | ||
( inv | ||
( ( right-unit) ∙ | ||
( htpy-eq (is-section-eq-htpy (λ i → pr2 (pr2 (h i)))) i)))) | ||
|
||
abstract | ||
is-retraction-map-inv-standard-pullback-Π : | ||
is-retraction (map-standard-pullback-Π) (map-inv-standard-pullback-Π) | ||
is-retraction-map-inv-standard-pullback-Π (α , β , γ) = | ||
map-extensionality-standard-pullback | ||
( map-Π f) | ||
( map-Π g) | ||
( refl) | ||
( refl) | ||
( inv (right-unit ∙ is-retraction-eq-htpy γ)) | ||
|
||
abstract | ||
is-equiv-map-standard-pullback-Π : | ||
is-equiv (map-standard-pullback-Π) | ||
is-equiv-map-standard-pullback-Π = | ||
is-equiv-is-invertible | ||
( map-inv-standard-pullback-Π) | ||
( is-section-map-inv-standard-pullback-Π) | ||
( is-retraction-map-inv-standard-pullback-Π) | ||
|
||
compute-standard-pullback-Π : | ||
( standard-pullback (map-Π f) (map-Π g)) ≃ | ||
( (i : I) → standard-pullback (f i) (g i)) | ||
compute-standard-pullback-Π = | ||
map-standard-pullback-Π , is-equiv-map-standard-pullback-Π | ||
``` | ||
|
||
### A dependent product of gap maps computes as the gap map of the dependent product | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 l5 : Level} {I : UU l1} | ||
{A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} | ||
(f : (i : I) → A i → X i) (g : (i : I) → B i → X i) | ||
(c : (i : I) → cone (f i) (g i) (C i)) | ||
where | ||
|
||
triangle-map-standard-pullback-Π : | ||
map-Π (λ i → gap (f i) (g i) (c i)) ~ | ||
map-standard-pullback-Π f g ∘ gap (map-Π f) (map-Π g) (cone-Π f g c) | ||
triangle-map-standard-pullback-Π h = | ||
eq-htpy | ||
( λ i → | ||
map-extensionality-standard-pullback | ||
( f i) | ||
( g i) | ||
( refl) | ||
( refl) | ||
( htpy-eq (is-section-eq-htpy _) i ∙ inv right-unit)) | ||
``` | ||
|
||
### Dependent products of pullbacks are pullbacks | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 l5 : Level} {I : UU l1} | ||
{A : I → UU l2} {B : I → UU l3} {X : I → UU l4} {C : I → UU l5} | ||
(f : (i : I) → A i → X i) (g : (i : I) → B i → X i) | ||
(c : (i : I) → cone (f i) (g i) (C i)) | ||
where | ||
|
||
abstract | ||
is-pullback-Π : | ||
((i : I) → is-pullback (f i) (g i) (c i)) → | ||
is-pullback (map-Π f) (map-Π g) (cone-Π f g c) | ||
is-pullback-Π is-pb-c = | ||
is-equiv-top-map-triangle | ||
( map-Π (λ i → gap (f i) (g i) (c i))) | ||
( map-standard-pullback-Π f g) | ||
( gap (map-Π f) (map-Π g) (cone-Π f g c)) | ||
( triangle-map-standard-pullback-Π f g c) | ||
( is-equiv-map-standard-pullback-Π f g) | ||
( is-equiv-map-Π-is-fiberwise-equiv is-pb-c) | ||
``` | ||
|
||
### Cones satisfying the universal property of pullbacks are closed under dependent products | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 l5 : Level} {I : UU l1} | ||
{A : I → UU l2} {B : I → UU l3} {X : I → UU l4} | ||
(f : (i : I) → A i → X i) (g : (i : I) → B i → X i) | ||
{C : I → UU l5} (c : (i : I) → cone (f i) (g i) (C i)) | ||
where | ||
|
||
universal-property-pullback-Π : | ||
((i : I) → universal-property-pullback (f i) (g i) (c i)) → | ||
universal-property-pullback (map-Π f) (map-Π g) (cone-Π f g c) | ||
universal-property-pullback-Π H = | ||
universal-property-pullback-is-pullback | ||
( map-Π f) | ||
( map-Π g) | ||
( cone-Π f g c) | ||
( is-pullback-Π f g c | ||
( λ i → | ||
is-pullback-universal-property-pullback (f i) (g i) (c i) (H i))) | ||
``` | ||
|
||
## Table of files about pullbacks | ||
|
||
The following table lists files that are about pullbacks as a general concept. | ||
|
||
{{#include tables/pullbacks.md}} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.