Skip to content

Commit

Permalink
A type is acyclic if and only if its terminal map is an acyclic map (#…
Browse files Browse the repository at this point in the history
  • Loading branch information
tomdjong authored Nov 6, 2023
1 parent cde8d88 commit bc3335a
Show file tree
Hide file tree
Showing 2 changed files with 69 additions and 0 deletions.
50 changes: 50 additions & 0 deletions src/foundation/fibers-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,10 @@ open import foundation-core.fibers-of-maps public

```agda
open import foundation.cones-over-cospans
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.type-arithmetic-unit-type
open import foundation.unit-type
open import foundation.universe-levels
Expand Down Expand Up @@ -58,6 +61,53 @@ module _
( is-pullback-cone-fiber)
```

### The fiber of the terminal map at any point is equivalent to its domain

```agda
module _
{l : Level} {A : UU l}
where

equiv-fiber-terminal-map :
(u : unit) fiber (terminal-map {A = A}) u ≃ A
equiv-fiber-terminal-map u =
right-unit-law-Σ-is-contr
( λ a is-prop-is-contr is-contr-unit (terminal-map a) u)

inv-equiv-fiber-terminal-map :
(u : unit) A ≃ fiber (terminal-map {A = A}) u
inv-equiv-fiber-terminal-map u =
inv-equiv (equiv-fiber-terminal-map u)

equiv-fiber-terminal-map-star :
fiber (terminal-map {A = A}) star ≃ A
equiv-fiber-terminal-map-star = equiv-fiber-terminal-map star

inv-equiv-fiber-terminal-map-star :
A ≃ fiber (terminal-map {A = A}) star
inv-equiv-fiber-terminal-map-star =
inv-equiv equiv-fiber-terminal-map-star
```

### The total space of the fibers of the terminal map is equivalent to its domain

```agda
module _
{l : Level} {A : UU l}
where

equiv-total-fiber-terminal-map :
Σ unit (fiber (terminal-map {A = A})) ≃ A
equiv-total-fiber-terminal-map =
( left-unit-law-Σ-is-contr is-contr-unit star) ∘e
( equiv-tot equiv-fiber-terminal-map)

inv-equiv-total-fiber-terminal-map :
A ≃ Σ unit (fiber (terminal-map {A = A}))
inv-equiv-total-fiber-terminal-map =
inv-equiv equiv-total-fiber-terminal-map
```

## Table of files about fibers of maps

The following table lists files that are about fibers of maps as a general
Expand Down
19 changes: 19 additions & 0 deletions src/synthetic-homotopy-theory/acyclic-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ open import foundation.epimorphisms
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels

open import synthetic-homotopy-theory.acyclic-types
Expand Down Expand Up @@ -76,6 +77,24 @@ module _
( ac b)))
```

### A type is acyclic if and only if its terminal map is an acyclic map

```agda
module _
{l : Level} (A : UU l)
where

is-acyclic-map-terminal-map-is-acyclic :
is-acyclic A is-acyclic-map (terminal-map {A = A})
is-acyclic-map-terminal-map-is-acyclic ac u =
is-acyclic-equiv (equiv-fiber-terminal-map u) ac

is-acyclic-is-acyclic-map-terminal-map :
is-acyclic-map (terminal-map {A = A}) is-acyclic A
is-acyclic-is-acyclic-map-terminal-map ac =
is-acyclic-equiv inv-equiv-fiber-terminal-map-star (ac star)
```

## See also

- [Dependent epimorphisms](foundation.dependent-epimorphisms.md)
Expand Down

0 comments on commit bc3335a

Please sign in to comment.