Skip to content

Commit

Permalink
Flattening lemma for sequential colimits (#972)
Browse files Browse the repository at this point in the history
Resolves #869
  • Loading branch information
VojtechStep authored Dec 18, 2023
1 parent e477d95 commit c468e60
Show file tree
Hide file tree
Showing 8 changed files with 560 additions and 69 deletions.
152 changes: 152 additions & 0 deletions src/foundation/commuting-triangles-of-identifications.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,10 @@ module foundation.commuting-triangles-of-identifications where

```agda
open import foundation.action-on-identifications-functions
open import foundation.path-algebra
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
Expand Down Expand Up @@ -47,3 +49,153 @@ module _
(left : x = z) (right : y = z) (top : x = y) UU l
coherence-triangle-identifications' left right top = (top ∙ right) = left
```

## Properties

### Whiskering of triangles of identifications

Given a commuting triangle of identifications

```text
top
x ----- y
\ /
left \ / right
\ /
z ,
```

we may consider three ways of attaching new identifications to it: prepending
`p : u = x` to the left, which gives us a commuting triangle

```text
p ∙ top
u ----- y
\ /
p ∙ left \ / right
\ /
z ,
```

or appending an identification `p : z = u` to the right, which gives

```text
top
u ----- y
\ /
left ∙ p \ / right ∙ p
\ /
z ,
```

or splicing an identification `p : y = u` and its inverse into the middle, to
get

```text
top ∙ p
u ----- y
\ /
left \ / p⁻¹ ∙ right
\ /
z ,
```

which isn't formalized yet.

Because concatenation of identifications is an equivalence, it follows that all
of these transformations are equivalences.

These lemmas are useful in proofs involving path algebra, because taking
`equiv-right-whisk-triangle-identicications` as an example, it provides us with
two maps: the forward direction states `(p = q ∙ r) (p ∙ s = q ∙ (r ∙ s))`,
which allows one to append an identification without needing to reassociate on
the right, and the backwards direction conversely allows one to cancel out an
identification in parentheses.

```agda
module _
{l : Level} {A : UU l} {x y z u : A}
(left : x = z) (top : x = y) {right : y = z} (p : z = u)
where

equiv-right-whisk-triangle-identifications :
( coherence-triangle-identifications left right top) ≃
( coherence-triangle-identifications (left ∙ p) (right ∙ p) top)
equiv-right-whisk-triangle-identifications =
( equiv-concat-assoc' (left ∙ p) top right p) ∘e
( equiv-identification-right-whisk p)

right-whisk-triangle-identifications :
coherence-triangle-identifications left right top
coherence-triangle-identifications (left ∙ p) (right ∙ p) top
right-whisk-triangle-identifications =
map-equiv equiv-right-whisk-triangle-identifications

right-unwhisk-triangle-identifications :
coherence-triangle-identifications (left ∙ p) (right ∙ p) top
coherence-triangle-identifications left right top
right-unwhisk-triangle-identifications =
map-inv-equiv equiv-right-whisk-triangle-identifications

equiv-right-whisk-triangle-identifications' :
( coherence-triangle-identifications' left right top) ≃
( coherence-triangle-identifications' (left ∙ p) (right ∙ p) top)
equiv-right-whisk-triangle-identifications' =
( equiv-concat-assoc top right p (left ∙ p)) ∘e
( equiv-identification-right-whisk p)

right-whisk-triangle-identifications' :
coherence-triangle-identifications' left right top
coherence-triangle-identifications' (left ∙ p) (right ∙ p) top
right-whisk-triangle-identifications' =
map-equiv equiv-right-whisk-triangle-identifications'

right-unwhisk-triangle-identifications' :
coherence-triangle-identifications' (left ∙ p) (right ∙ p) top
coherence-triangle-identifications' left right top
right-unwhisk-triangle-identifications' =
map-inv-equiv equiv-right-whisk-triangle-identifications'

module _
{l : Level} {A : UU l} {x y z u : A}
(p : u = x) {left : x = z} {right : y = z} {top : x = y}
where

equiv-left-whisk-triangle-identifications :
( coherence-triangle-identifications left right top) ≃
( coherence-triangle-identifications (p ∙ left) right (p ∙ top))
equiv-left-whisk-triangle-identifications =
( inv-equiv (equiv-concat-assoc' (p ∙ left) p top right)) ∘e
( equiv-identification-left-whisk p)

left-whisk-triangle-identifications :
coherence-triangle-identifications left right top
coherence-triangle-identifications (p ∙ left) right (p ∙ top)
left-whisk-triangle-identifications =
map-equiv equiv-left-whisk-triangle-identifications

left-unwhisk-triangle-identifications :
coherence-triangle-identifications (p ∙ left) right (p ∙ top)
coherence-triangle-identifications left right top
left-unwhisk-triangle-identifications =
map-inv-equiv equiv-left-whisk-triangle-identifications

equiv-left-whisk-triangle-identifications' :
( coherence-triangle-identifications' left right top) ≃
( coherence-triangle-identifications' (p ∙ left) right (p ∙ top))
equiv-left-whisk-triangle-identifications' =
( inv-equiv (equiv-concat-assoc p top right (p ∙ left))) ∘e
( equiv-identification-left-whisk p)

left-whisk-triangle-identifications' :
coherence-triangle-identifications' left right top
coherence-triangle-identifications' (p ∙ left) right (p ∙ top)
left-whisk-triangle-identifications' =
map-equiv equiv-left-whisk-triangle-identifications'

left-unwhisk-triangle-identifications' :
coherence-triangle-identifications' (p ∙ left) right (p ∙ top)
coherence-triangle-identifications' left right top
left-unwhisk-triangle-identifications' =
map-inv-equiv equiv-left-whisk-triangle-identifications'
```
19 changes: 19 additions & 0 deletions src/foundation/functoriality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels

open import foundation-core.commuting-squares-of-maps
open import foundation-core.commuting-triangles-of-maps
open import foundation-core.dependent-identifications
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
Expand Down Expand Up @@ -375,6 +376,24 @@ module _
coherence-square-maps-map-Σ-map-base H (a , p) = eq-pair-Σ (H a) refl
```

#### `map-Σ-map-base` preserves commuting triangles of maps

```agda
module _
{l1 l2 l3 l4 : Level}
{A : UU l1} {B : UU l2} {X : UU l3} (S : X UU l4)
(left : A X) (right : B X) (top : A B)
where

coherence-triangle-maps-map-Σ-map-base :
(H : coherence-triangle-maps left right top)
coherence-triangle-maps
( map-Σ-map-base left S)
( map-Σ-map-base right S)
( map-Σ (S ∘ right) top (λ a tr S (H a)))
coherence-triangle-maps-map-Σ-map-base H (a , _) = eq-pair-Σ (H a) refl
```

### The action of `map-Σ-map-base` on identifications of the form `eq-pair-Σ` is given by the action on the base

```agda
Expand Down
74 changes: 26 additions & 48 deletions src/foundation/morphisms-arrows.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,11 @@ module foundation.morphisms-arrows where
open import foundation.action-on-identifications-functions
open import foundation.commuting-squares-of-homotopies
open import foundation.commuting-squares-of-identifications
open import foundation.commuting-triangles-of-identifications
open import foundation.dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.homotopy-induction
open import foundation.path-algebra
open import foundation.structure-identity-principle
open import foundation.universe-levels

Expand Down Expand Up @@ -163,7 +165,7 @@ module _
coh-comp-hom-arrow
```

### Homotopies of morphsims of arrows
### Homotopies of morphisms of arrows

A **homotopy of morphisms of arrows** from `(i , j , H)` to `(i' , j' , H')` is
a triple `(I , J , K)` consisting of homotopies `I : i ~ i'` and `J : j ~ j'`
Expand Down Expand Up @@ -377,60 +379,36 @@ module _
( htpy-domain-left-whisker-htpy-hom-arrow)
( htpy-codomain-left-whisker-htpy-hom-arrow)
coh-left-whisker-htpy-hom-arrow a =
( inv
( ap
( concat _ _)
( ap-comp h
( map-domain-hom-arrow g h γ)
( htpy-domain-htpy-hom-arrow f g α β H a)))) ∙
( assoc
( left-whisk-triangle-identifications'
( ap (map-codomain-hom-arrow g h γ) (coh-hom-arrow f g α a))
( coh-hom-arrow g h γ (map-domain-hom-arrow f g α a))
( ( ap
( coh-hom-arrow g h γ (map-domain-hom-arrow f g α a) ∙_)
( inv
( ap-comp h
( map-domain-hom-arrow g h γ)
( htpy-domain-htpy-hom-arrow f g α β H a)))) ∙
( nat-htpy
( coh-hom-arrow g h γ)
( htpy-domain-htpy-hom-arrow f g α β H a)))) ∙
( right-whisk-square-identification
( ap
( h ∘ map-domain-hom-arrow g h γ)
( htpy-domain-htpy-hom-arrow f g α β H a))) ∙
( ap
( concat
( ap (map-codomain-hom-arrow g h γ) (coh-hom-arrow f g α a))
( h _))
( nat-htpy
( coh-hom-arrow g h γ)
( htpy-domain-htpy-hom-arrow f g α β H a))) ∙
( inv
( assoc
( ap (map-codomain-hom-arrow g h γ) (coh-hom-arrow f g α a))
( ap
( map-codomain-hom-arrow g h γ ∘ g)
( htpy-domain-htpy-hom-arrow f g α β H a))
( coh-hom-arrow g h γ (map-domain-hom-arrow f g β a)))) ∙
( ap
( concat' _ (coh-hom-arrow g h γ (map-domain-hom-arrow f g β a)))
( map-codomain-hom-arrow g h γ)
( htpy-codomain-htpy-hom-arrow f g α β H (f a)))
( ap (map-codomain-hom-arrow g h γ) (coh-hom-arrow f g α a))
( coh-hom-arrow g h γ (map-domain-hom-arrow f g β a))
( ( ap
( concat
( ap (map-codomain-hom-arrow g h γ) (coh-hom-arrow f g α a))
( _))
( ap (map-codomain-hom-arrow g h γ) (coh-hom-arrow f g α a) ∙_)
( ap-comp
( map-codomain-hom-arrow g h γ)
( g)
( htpy-domain-htpy-hom-arrow f g α β H a))) ∙
( ( inv
( ap-concat
( map-codomain-hom-arrow g h γ)
( coh-hom-arrow f g α a)
( ap g (htpy-domain-htpy-hom-arrow f g α β H a)))) ∙
( ap
( ap (map-codomain-hom-arrow g h γ))
( coh-htpy-hom-arrow f g α β H a)) ∙
( ap-concat
( map-codomain-hom-arrow g h γ)
( htpy-codomain-htpy-hom-arrow f g α β H (f a))
( coh-hom-arrow f g β a))))) ∙
( assoc
( ap
( map-codomain-hom-arrow g h γ)
( htpy-codomain-htpy-hom-arrow f g α β H (f a)))
( ap (map-codomain-hom-arrow g h γ) (coh-hom-arrow f g β a))
( coh-hom-arrow g h γ (map-domain-hom-arrow f g β a)))
( coherence-square-identifications-ap
( map-codomain-hom-arrow g h γ)
( htpy-codomain-htpy-hom-arrow f g α β H (f a))
( coh-hom-arrow f g α a)
( coh-hom-arrow f g β a)
( ap g (htpy-domain-htpy-hom-arrow f g α β H a))
( coh-htpy-hom-arrow f g α β H a))))

left-whisker-htpy-hom-arrow :
htpy-hom-arrow f h
Expand Down
14 changes: 9 additions & 5 deletions src/foundation/type-arithmetic-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -201,13 +201,17 @@ module _
pr1 associative-Σ = map-associative-Σ
pr2 associative-Σ = is-equiv-map-associative-Σ

abstract
is-equiv-map-inv-associative-Σ : is-equiv map-inv-associative-Σ
is-equiv-map-inv-associative-Σ =
is-equiv-is-invertible
map-associative-Σ
is-retraction-map-inv-associative-Σ
is-section-map-inv-associative-Σ

inv-associative-Σ : Σ A (λ x Σ (B x) (λ y C (x , y))) ≃ Σ (Σ A B) C
pr1 inv-associative-Σ = map-inv-associative-Σ
pr2 inv-associative-Σ =
is-equiv-is-invertible
map-associative-Σ
is-retraction-map-inv-associative-Σ
is-section-map-inv-associative-Σ
pr2 inv-associative-Σ = is-equiv-map-inv-associative-Σ
```

### Associativity, second formulation
Expand Down
1 change: 1 addition & 0 deletions src/synthetic-homotopy-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ open import synthetic-homotopy-theory.eckmann-hilton-argument public
open import synthetic-homotopy-theory.equivalences-sequential-diagrams public
open import synthetic-homotopy-theory.flattening-lemma-coequalizers public
open import synthetic-homotopy-theory.flattening-lemma-pushouts public
open import synthetic-homotopy-theory.flattening-lemma-sequential-colimits public
open import synthetic-homotopy-theory.free-loops public
open import synthetic-homotopy-theory.functoriality-loop-spaces public
open import synthetic-homotopy-theory.functoriality-sequential-colimits public
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ open import synthetic-homotopy-theory.universal-property-pushouts

## Idea

The **flattening lemma** for
The {{#concept "flattening lemma" Disambiguation="coequalizers"}} for
[coequalizers](synthetic-homotopy-theory.coequalizers.md) states that
coequalizers commute with
[dependent pair types](foundation.dependent-pair-types.md). More precisely,
Expand Down Expand Up @@ -171,26 +171,18 @@ module _
( vertical-map-span-cocone-cofork f g)
( horizontal-map-span-cocone-cofork f g)
( cocone-codiagonal-cofork f g e))
( λ where
(inl a , t) refl
(inr a , t) refl)
( λ where
(inl a , t) refl
(inr a , t) refl)
( ind-Σ (ind-coprod _ (ev-pair refl-htpy) (ev-pair refl-htpy)))
( ind-Σ (ind-coprod _ (ev-pair refl-htpy) (ev-pair refl-htpy)))
( refl-htpy)
( refl-htpy)
( coherence-square-cocone-cofork
( bottom-map-cofork-flattening-lemma-coequalizer f g P e)
( top-map-cofork-flattening-lemma-coequalizer f g P e)
( cofork-flattening-lemma-coequalizer f g P e))
( λ where
(inl a , t) refl
(inr a , t)
( ap-id
( eq-pair-Σ
( coherence-cofork f g e a)
( refl))) ∙
( inv right-unit))
( ind-Σ
( ind-coprod _
( ev-pair refl-htpy)
( ev-pair (λ t ap-id _ ∙ inv right-unit))))
( is-equiv-map-equiv
( right-distributive-Σ-coprod A A
( ( P) ∘
Expand Down
Loading

0 comments on commit c468e60

Please sign in to comment.