Skip to content

Commit

Permalink
Perfect subgroups (#847)
Browse files Browse the repository at this point in the history
This PR defines perfect subgroups.

---------

Co-authored-by: Fredrik Bakke <[email protected]>
  • Loading branch information
UlrikBuchholtz and fredrik-bakke authored Oct 16, 2023
1 parent c674508 commit c5ba6a3
Show file tree
Hide file tree
Showing 2 changed files with 48 additions and 0 deletions.
1 change: 1 addition & 0 deletions src/group-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,7 @@ open import group-theory.orbits-group-actions public
open import group-theory.orbits-monoid-actions public
open import group-theory.orders-of-elements-groups public
open import group-theory.perfect-groups public
open import group-theory.perfect-subgroups public
open import group-theory.powers-of-elements-commutative-monoids public
open import group-theory.powers-of-elements-groups public
open import group-theory.powers-of-elements-monoids public
Expand Down
47 changes: 47 additions & 0 deletions src/group-theory/perfect-subgroups.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# Perfect subgroups

```agda
module group-theory.perfect-subgroups where
```

<details><summary>Imports</summary>

```agda
open import foundation.propositions
open import foundation.universe-levels

open import group-theory.groups
open import group-theory.perfect-groups
open import group-theory.subgroups
```

</details>

## Idea

A [subgroup](group-theory.subgroups.md) `H` of a [group](group-theory.groups.md)
`G` is a **perfect subgroup** if it is a
[perfect group](group-theory.perfect-groups.md) on its own.

## Definitions

### The predicate of being a perfect subgroup

```agda
module _
{l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G)
where

is-perfect-prop-Subgroup : Prop (l1 ⊔ l2)
is-perfect-prop-Subgroup = is-perfect-prop-Group (group-Subgroup G H)

is-perfect-Subgroup : UU (l1 ⊔ l2)
is-perfect-Subgroup = type-Prop is-perfect-prop-Subgroup

is-prop-is-perfect-Subgroup : is-prop is-perfect-Subgroup
is-prop-is-perfect-Subgroup = is-prop-type-Prop is-perfect-prop-Subgroup
```

## External links

A wikidata identifier was not available for this concept.

0 comments on commit c5ba6a3

Please sign in to comment.