Skip to content

Commit

Permalink
Suspensions increase connectedness and relating k-acyclic maps, k
Browse files Browse the repository at this point in the history
…-equivalences and `k`-connected maps (#951)
  • Loading branch information
tomdjong authored Nov 29, 2023
1 parent f019b7b commit cbf3ede
Show file tree
Hide file tree
Showing 4 changed files with 121 additions and 1 deletion.
Original file line number Diff line number Diff line change
Expand Up @@ -227,7 +227,7 @@ is a `k`-epi, by considering the commutative diagram for any `k`-type `X`:
```text
horizontal-map-cocone (fst)
(B X) <---------------------------- cocone f f X
| ≃ |
| ≃ ^
id | ≃ ≃ | (universal property)
v |
(B X) ------------------------> (pushout f f → X)
Expand Down
77 changes: 77 additions & 0 deletions src/synthetic-homotopy-theory/suspensions-of-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@ module synthetic-homotopy-theory.suspensions-of-types where
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.commuting-squares-of-identifications
open import foundation.connected-types
open import foundation.constant-maps
open import foundation.contractible-types
open import foundation.dependent-identifications
open import foundation.dependent-pair-types
Expand All @@ -22,7 +24,11 @@ open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.path-algebra
open import foundation.torsorial-type-families
open import foundation.transport-along-identifications
open import foundation.truncated-types
open import foundation.truncation-levels
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.unit-type
open import foundation.universe-levels

Expand Down Expand Up @@ -511,3 +517,74 @@ is-contr-suspension-is-contr {l} {X} is-contr-X =
( up-pushout terminal-map terminal-map))
( is-contr-unit)
```

### Suspensions increase connectedness

More precisely, the suspension of a `k`-connected type is `(k+1)`-connected.

For the proof we use that a type `A` is `n`-connected if and only if the
constant map `B (A B)` is an equivalence for all `n`-types `B`.

So for any `(k+1)`-type `Y`, we have the commutative diagram

```text
const
Y ----------------------> (suspension X → Y)
^ |
pr1 | ≃ ≃ | ev-suspension
| ≃ v
Σ (y y' : Y) , y = y' <----- suspension-structure Y
≐ Σ (y y' : Y) , X y = y'
```

where the bottom map is induced by the equivalence `(y = y') (X (y = y'))`
given by the fact that `X` is `k`-connected and `y = y'` is a `k`-type.

Since the left, bottom and right maps are equivalences, so is the top map, as
desired.

```agda
module _
{l : Level} {k : 𝕋} {X : UU l}
where

is-equiv-north-suspension-ev-suspension-is-connected-Truncated-Type :
is-connected k X
{l' : Level} (Y : Truncated-Type l' (succ-𝕋 k))
is-equiv
( ( north-suspension-structure) ∘
( ev-suspension
( suspension-structure-suspension X)
( type-Truncated-Type Y)))
is-equiv-north-suspension-ev-suspension-is-connected-Truncated-Type c Y =
is-equiv-comp
( north-suspension-structure)
( ev-suspension
( suspension-structure-suspension X)
( type-Truncated-Type Y))
( is-equiv-ev-suspension
( suspension-structure-suspension X)
( up-pushout terminal-map terminal-map) (type-Truncated-Type Y))
( is-equiv-pr1-is-contr
( λ y
is-torsorial-fiber-Id
( λ y'
( const X (y = y') ,
is-equiv-diagonal-is-connected (Id-Truncated-Type Y y y') c))))

is-connected-succ-suspension-is-connected :
is-connected k X is-connected (succ-𝕋 k) (suspension X)
is-connected-succ-suspension-is-connected c =
is-connected-is-equiv-diagonal
( λ Y
is-equiv-right-factor
( ( north-suspension-structure) ∘
( ev-suspension
( suspension-structure-suspension X)
( type-Truncated-Type Y)))
( const (suspension X) (type-Truncated-Type Y))
( is-equiv-north-suspension-ev-suspension-is-connected-Truncated-Type
( c)
( Y))
( is-equiv-id))
```
30 changes: 30 additions & 0 deletions src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ open import foundation.precomposition-dependent-functions
open import foundation.precomposition-functions
open import foundation.propositions
open import foundation.truncated-types
open import foundation.truncation-equivalences
open import foundation.truncation-levels
open import foundation.type-arithmetic-unit-type
open import foundation.unit-type
Expand Down Expand Up @@ -304,6 +305,35 @@ module _
( is-epimorphism-is-truncated-acyclic-map-Truncated-Type f af))
```

### Every `k`-connected map is `(k+1)`-acyclic

```agda
module _
{l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A B)
where

is-truncated-succ-acyclic-map-is-connected-map :
is-connected-map k f is-truncated-acyclic-map (succ-𝕋 k) f
is-truncated-succ-acyclic-map-is-connected-map c b =
is-truncated-succ-acyclic-is-connected (c b)
```

### Every `k`-equivalence is `k`-acyclic

```agda
module _
{l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A B)
where

is-truncated-acyclic-map-is-truncation-equivalence :
is-truncation-equivalence k f is-truncated-acyclic-map k f
is-truncated-acyclic-map-is-truncation-equivalence e =
is-truncated-acyclic-map-is-epimorphism-Truncated-Type f
( λ C
is-emb-is-equiv
( is-equiv-precomp-is-truncation-equivalence k f e C))
```

## See also

- [Acyclic maps](synthetic-homotopy-theory.acyclic-maps.md)
Expand Down
13 changes: 13 additions & 0 deletions src/synthetic-homotopy-theory/truncated-acyclic-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,19 @@ module _
( ac)
```

### Every `k`-connected type is `(k+1)`-acyclic

```agda
module _
{l : Level} {k : 𝕋} {A : UU l}
where

is-truncated-succ-acyclic-is-connected :
is-connected k A is-truncated-acyclic (succ-𝕋 k) A
is-truncated-succ-acyclic-is-connected =
is-connected-succ-suspension-is-connected
```

## See also

- [Acyclic maps](synthetic-homotopy-theory.acyclic-maps.md)
Expand Down

0 comments on commit cbf3ede

Please sign in to comment.