-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
defined sections, retractions and equivalences and proved lemma 1.1.6. (
- Loading branch information
Showing
3 changed files
with
357 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
332 changes: 332 additions & 0 deletions
332
src/synthetic-category-theory/equivalence-of-synthetic-categories.lagda.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,332 @@ | ||
# Equivalence of synthetic categories | ||
|
||
```agda | ||
{-# OPTIONS --guardedness #-} | ||
|
||
module synthetic-category-theory.equivalence-of-synthetic-categories where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import foundation.cartesian-product-types | ||
open import foundation.dependent-pair-types | ||
open import foundation.universe-levels | ||
|
||
open import structured-types.globular-types | ||
|
||
open import synthetic-category-theory.synthetic-categories | ||
``` | ||
|
||
</details> | ||
|
||
## Definitions | ||
|
||
### Sections, retractions and equivalences | ||
|
||
Consider a functor f : C → D. A section of f is a functor s : D → C together | ||
with an isomorphism fs ≅ id_C. A retraction of f is a functor r : D → C together | ||
with an isomorphism rf ≅ id_D. The functor f is an equivalence if there is a | ||
functor g : D → C together with isomorphisms fg ≅ id_C and gf ≅ id_D. | ||
|
||
```agda | ||
module _ | ||
{l : Level} | ||
where | ||
|
||
is-section-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(s : functor-Synthetic-Category-Theory κ D C) → UU l | ||
is-section-Synthetic-Category-Theory κ μ ι C D f s = | ||
isomorphism-Synthetic-Category-Theory | ||
( κ) | ||
( comp-functor-Synthetic-Category-Theory μ f s) | ||
( id-functor-Synthetic-Category-Theory ι D) | ||
|
||
section-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → UU l | ||
section-Synthetic-Category-Theory κ μ ι C D f = | ||
Σ ( functor-Synthetic-Category-Theory κ D C) | ||
( λ s → is-section-Synthetic-Category-Theory κ μ ι C D f s) | ||
|
||
map-section-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
section-Synthetic-Category-Theory κ μ ι C D f → | ||
functor-Synthetic-Category-Theory κ D C | ||
map-section-Synthetic-Category-Theory κ μ ι C D f sec = pr1 sec | ||
|
||
is-section-section-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(sec : section-Synthetic-Category-Theory κ μ ι C D f) → | ||
is-section-Synthetic-Category-Theory | ||
κ μ ι C D f (map-section-Synthetic-Category-Theory κ μ ι C D f sec) | ||
is-section-section-Synthetic-Category-Theory κ μ ι C D f sec = pr2 sec | ||
|
||
is-retraction-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(r : functor-Synthetic-Category-Theory κ D C) → UU l | ||
is-retraction-Synthetic-Category-Theory κ μ ι C D f r = | ||
isomorphism-Synthetic-Category-Theory | ||
( κ) | ||
( comp-functor-Synthetic-Category-Theory μ r f) | ||
( id-functor-Synthetic-Category-Theory ι C) | ||
|
||
retraction-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → UU l | ||
retraction-Synthetic-Category-Theory κ μ ι C D f = | ||
Σ ( functor-Synthetic-Category-Theory κ D C) | ||
( λ r → is-retraction-Synthetic-Category-Theory κ μ ι C D f r) | ||
|
||
map-retraction-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(retraction-Synthetic-Category-Theory κ μ ι C D f) → | ||
(functor-Synthetic-Category-Theory κ D C) | ||
map-retraction-Synthetic-Category-Theory κ μ ι C D f ret = pr1 ret | ||
|
||
is-retraction-retraction-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(ret : retraction-Synthetic-Category-Theory κ μ ι C D f) → | ||
is-retraction-Synthetic-Category-Theory | ||
κ μ ι C D f (map-retraction-Synthetic-Category-Theory κ μ ι C D f ret) | ||
is-retraction-retraction-Synthetic-Category-Theory κ μ ι C D f ret = pr2 ret | ||
|
||
is-equivalence-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) | ||
(g : functor-Synthetic-Category-Theory κ D C) → UU l | ||
is-equivalence-Synthetic-Category-Theory κ μ ι C D f g = | ||
( is-section-Synthetic-Category-Theory κ μ ι C D f g) | ||
× | ||
( is-retraction-Synthetic-Category-Theory κ μ ι C D f g) | ||
|
||
equivalence-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → UU l | ||
equivalence-Synthetic-Category-Theory κ μ ι C D f = | ||
Σ ( functor-Synthetic-Category-Theory κ D C) | ||
( λ g → is-equivalence-Synthetic-Category-Theory κ μ ι C D f g) | ||
|
||
map-equivalence-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
equivalence-Synthetic-Category-Theory κ μ ι C D f → | ||
functor-Synthetic-Category-Theory κ D C | ||
map-equivalence-Synthetic-Category-Theory κ μ ι C D f eq = pr1 eq | ||
|
||
is-equivalence-equivalence-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(eq : equivalence-Synthetic-Category-Theory κ μ ι C D f) → | ||
is-equivalence-Synthetic-Category-Theory | ||
κ μ ι C D f (map-equivalence-Synthetic-Category-Theory κ μ ι C D f eq) | ||
is-equivalence-equivalence-Synthetic-Category-Theory κ μ ι C D f eq = pr2 eq | ||
|
||
is-section-equivalence-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(eq : equivalence-Synthetic-Category-Theory κ μ ι C D f) → | ||
is-section-Synthetic-Category-Theory | ||
κ μ ι C D f (map-equivalence-Synthetic-Category-Theory κ μ ι C D f eq) | ||
is-section-equivalence-Synthetic-Category-Theory κ μ ι C D f eq = | ||
pr1 (is-equivalence-equivalence-Synthetic-Category-Theory κ μ ι C D f eq) | ||
|
||
is-retraction-equivalence-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(eq : equivalence-Synthetic-Category-Theory κ μ ι C D f) → | ||
is-retraction-Synthetic-Category-Theory | ||
κ μ ι C D f (map-equivalence-Synthetic-Category-Theory κ μ ι C D f eq) | ||
is-retraction-equivalence-Synthetic-Category-Theory κ μ ι C D f eq = | ||
pr2 (is-equivalence-equivalence-Synthetic-Category-Theory κ μ ι C D f eq) | ||
``` | ||
|
||
A functor f : C → D admits a section and a retraction iff it is an equivalence | ||
(Lemma 1.1.6. in the book.) | ||
|
||
```agda | ||
is-equivalence-admits-section-admits-retraction-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
equivalence-Synthetic-Category-Theory κ μ ι C D f → | ||
(section-Synthetic-Category-Theory κ μ ι C D f) | ||
× | ||
(retraction-Synthetic-Category-Theory κ μ ι C D f) | ||
is-equivalence-admits-section-admits-retraction-Synthetic-Category-Theory | ||
κ μ ι C D f eq = | ||
( map-equivalence-Synthetic-Category-Theory κ μ ι C D f eq , | ||
pr1 | ||
(is-equivalence-equivalence-Synthetic-Category-Theory κ μ ι C D f eq)) , | ||
( map-equivalence-Synthetic-Category-Theory κ μ ι C D f eq , | ||
pr2 | ||
(is-equivalence-equivalence-Synthetic-Category-Theory κ μ ι C D f eq)) | ||
|
||
admits-section-admits-retraction-is-equivalence-Synthetic-Category-Theory : | ||
(κ : language-Synthetic-Category-Theory l) → | ||
(μ : composition-Synthetic-Category-Theory κ) → | ||
(ι : identity-Synthetic-Category-Theory κ) → | ||
(ν : inverse-Synthetic-Category-Theory κ) → | ||
(Λ : left-unit-law-composition-Synthetic-Category-Theory κ ι μ) → | ||
(Ρ : right-unit-law-composition-Synthetic-Category-Theory κ ι μ) → | ||
(X : horizontal-composition-Synthetic-Category-Theory κ μ) → | ||
(Α : associative-composition-Synthetic-Category-Theory κ μ) → | ||
(C D : category-Synthetic-Category-Theory κ) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
section-Synthetic-Category-Theory κ μ ι C D f → | ||
retraction-Synthetic-Category-Theory κ μ ι C D f → | ||
equivalence-Synthetic-Category-Theory κ μ ι C D f | ||
admits-section-admits-retraction-is-equivalence-Synthetic-Category-Theory | ||
κ μ ι ν Λ Ρ Χ Α C D f sec ret = | ||
let | ||
s = map-section-Synthetic-Category-Theory κ μ ι C D f sec | ||
Ξ = is-section-section-Synthetic-Category-Theory κ μ ι C D f sec | ||
r = map-retraction-Synthetic-Category-Theory κ μ ι C D f ret | ||
Ψ = is-retraction-retraction-Synthetic-Category-Theory κ μ ι C D f ret | ||
α = comp-iso-Synthetic-Category-Theory μ | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( right-unit-law-comp-functor-Synthetic-Category-Theory Ρ r) | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
(id-iso-Synthetic-Category-Theory ι r) Ξ)) | ||
( associative-comp-functor-Synthetic-Category-Theory Α r f s)) | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( inv-iso-Synthetic-Category-Theory ν Ψ) | ||
( id-iso-Synthetic-Category-Theory ι s))) | ||
( inv-iso-Synthetic-Category-Theory ν | ||
( left-unit-law-comp-functor-Synthetic-Category-Theory Λ s)) | ||
β = comp-iso-Synthetic-Category-Theory μ | ||
( Ψ) | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( α) | ||
( id-iso-Synthetic-Category-Theory ι f)) | ||
in | ||
s , Ξ , β | ||
``` | ||
|
||
Equivalences are closed under composition (lemma 1.1.8.) | ||
|
||
```agda | ||
module _ | ||
{l : Level} {κ : language-Synthetic-Category-Theory l} | ||
{μ : composition-Synthetic-Category-Theory κ} | ||
{ι : identity-Synthetic-Category-Theory κ} | ||
{ν : inverse-Synthetic-Category-Theory κ} | ||
{Λ : left-unit-law-composition-Synthetic-Category-Theory κ ι μ} | ||
{Ρ : right-unit-law-composition-Synthetic-Category-Theory κ ι μ} | ||
{Χ : horizontal-composition-Synthetic-Category-Theory κ μ} | ||
{Α : associative-composition-Synthetic-Category-Theory κ μ} | ||
where | ||
|
||
equiv-equiv-comp-equiv-Synthetic-Category-Theory : | ||
(C D E : category-Synthetic-Category-Theory κ) → | ||
(f' : functor-Synthetic-Category-Theory κ D E) → | ||
(f : functor-Synthetic-Category-Theory κ C D) → | ||
(eq-f' : equivalence-Synthetic-Category-Theory κ μ ι D E f') → | ||
(eq-f : equivalence-Synthetic-Category-Theory κ μ ι C D f) → | ||
equivalence-Synthetic-Category-Theory | ||
κ μ ι C E (comp-functor-Synthetic-Category-Theory μ f' f) | ||
equiv-equiv-comp-equiv-Synthetic-Category-Theory | ||
C D E f' f eq-f' eq-f = | ||
let | ||
g = map-equivalence-Synthetic-Category-Theory κ μ ι C D f eq-f | ||
g' = map-equivalence-Synthetic-Category-Theory κ μ ι D E f' eq-f' | ||
in | ||
comp-functor-Synthetic-Category-Theory μ g g' , | ||
comp-iso-Synthetic-Category-Theory μ | ||
( is-section-equivalence-Synthetic-Category-Theory κ μ ι D E f' eq-f') | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( right-unit-law-comp-functor-Synthetic-Category-Theory Ρ f') | ||
( id-iso-Synthetic-Category-Theory ι g')) | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( id-iso-Synthetic-Category-Theory ι f') | ||
( is-section-equivalence-Synthetic-Category-Theory | ||
κ μ ι C D f eq-f)) | ||
( id-iso-Synthetic-Category-Theory ι g')) | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( associative-comp-functor-Synthetic-Category-Theory Α f' f g) | ||
( id-iso-Synthetic-Category-Theory ι g')) | ||
( inv-iso-Synthetic-Category-Theory ν | ||
( associative-comp-functor-Synthetic-Category-Theory Α | ||
( comp-functor-Synthetic-Category-Theory μ f' f) | ||
( g) | ||
( g')))))) , | ||
comp-iso-Synthetic-Category-Theory μ | ||
( is-retraction-equivalence-Synthetic-Category-Theory κ μ ι C D f eq-f) | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( right-unit-law-comp-functor-Synthetic-Category-Theory Ρ g) | ||
( id-iso-Synthetic-Category-Theory ι f)) | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( id-iso-Synthetic-Category-Theory ι g) | ||
( is-retraction-equivalence-Synthetic-Category-Theory | ||
κ μ ι D E f' eq-f')) | ||
( id-iso-Synthetic-Category-Theory ι f)) | ||
( comp-iso-Synthetic-Category-Theory μ | ||
( horizontal-comp-iso-Synthetic-Category-Theory Χ | ||
( associative-comp-functor-Synthetic-Category-Theory Α g g' f') | ||
( id-iso-Synthetic-Category-Theory ι f)) | ||
( inv-iso-Synthetic-Category-Theory ν | ||
( associative-comp-functor-Synthetic-Category-Theory Α | ||
( comp-functor-Synthetic-Category-Theory μ g g') | ||
( f') | ||
( f)))))) | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters