Skip to content

Commit

Permalink
Characterization of various families over pushouts (#1148)
Browse files Browse the repository at this point in the history
This PR characterizes (as in "provides the expected descent data and
shows equivalence") the following type families over pushouts:
- families of function types, `x ↦ P x → Q x`
- families of equivalence types, `x ↦ P x ≃ Q x`
- families of based identity types at `x₀ : X`, `x ↦ x₀ = x`

It also introduces sections of descent data, which correspond to
sections of the associated type family
  • Loading branch information
VojtechStep authored Jun 5, 2024
1 parent b4aac3c commit dafc57a
Show file tree
Hide file tree
Showing 10 changed files with 1,418 additions and 7 deletions.
20 changes: 13 additions & 7 deletions src/foundation/commuting-triangles-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,20 +56,26 @@ module _
(left : A X) (right : B X) (e : A ≃ B)
where

equiv-coherence-triangle-maps-inv-top' :
coherence-triangle-maps left right (map-equiv e) ≃
coherence-triangle-maps' right left (map-inv-equiv e)
equiv-coherence-triangle-maps-inv-top' =
equiv-Π
( λ b left (map-inv-equiv e b) = right b)
( e)
( λ a
equiv-concat
( ap left (is-retraction-map-inv-equiv e a))
( right (map-equiv e a)))

equiv-coherence-triangle-maps-inv-top :
coherence-triangle-maps left right (map-equiv e) ≃
coherence-triangle-maps right left (map-inv-equiv e)
equiv-coherence-triangle-maps-inv-top =
( equiv-inv-htpy
( left ∘ (map-inv-equiv e))
( right)) ∘e
( equiv-Π
( λ b left (map-inv-equiv e b) = right b)
( e)
( λ a
equiv-concat
( ap left (is-retraction-map-inv-equiv e a))
( right (map-equiv e a))))
( equiv-coherence-triangle-maps-inv-top')

coherence-triangle-maps-inv-top :
coherence-triangle-maps left right (map-equiv e)
Expand Down
14 changes: 14 additions & 0 deletions src/foundation/equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ open import foundation.equivalence-extensionality
open import foundation.function-extensionality
open import foundation.functoriality-fibers-of-maps
open import foundation.logical-equivalences
open import foundation.transport-along-identifications
open import foundation.transposition-identifications-along-equivalences
open import foundation.truncated-maps
open import foundation.universal-property-equivalences
Expand Down Expand Up @@ -572,6 +573,19 @@ pr1 (equiv-precomp-equiv e C) = _∘e e
pr2 (equiv-precomp-equiv e C) = is-equiv-precomp-equiv-equiv e
```

### Computing transport in the type of equivalences

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} (B : A UU l2) (C : A UU l3)
where

tr-equiv-type :
{x y : A} (p : x = y) (e : B x ≃ C x)
tr (λ x B x ≃ C x) p e = equiv-tr C p ∘e e ∘e equiv-tr B (inv p)
tr-equiv-type refl e = eq-htpy-equiv refl-htpy
```

### A cospan in which one of the legs is an equivalence is a pullback if and only if the corresponding map on the cone is an equivalence

```agda
Expand Down
4 changes: 4 additions & 0 deletions src/synthetic-homotopy-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,9 @@ open import synthetic-homotopy-theory.descent-circle-dependent-pair-types public
open import synthetic-homotopy-theory.descent-circle-equivalence-types public
open import synthetic-homotopy-theory.descent-circle-function-types public
open import synthetic-homotopy-theory.descent-circle-subtypes public
open import synthetic-homotopy-theory.descent-data-equivalence-types-over-pushouts public
open import synthetic-homotopy-theory.descent-data-function-types-over-pushouts public
open import synthetic-homotopy-theory.descent-data-identity-types-over-pushouts public
open import synthetic-homotopy-theory.descent-data-pushouts public
open import synthetic-homotopy-theory.descent-data-sequential-colimits public
open import synthetic-homotopy-theory.descent-property-pushouts public
Expand Down Expand Up @@ -103,6 +106,7 @@ open import synthetic-homotopy-theory.recursion-principle-pushouts public
open import synthetic-homotopy-theory.retracts-of-sequential-diagrams public
open import synthetic-homotopy-theory.rewriting-pushouts public
open import synthetic-homotopy-theory.sections-descent-circle public
open import synthetic-homotopy-theory.sections-descent-data-pushouts public
open import synthetic-homotopy-theory.sequential-colimits public
open import synthetic-homotopy-theory.sequential-diagrams public
open import synthetic-homotopy-theory.sequentially-compact-types public
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ open import foundation.homotopy-induction
open import foundation.identity-types
open import foundation.retractions
open import foundation.sections
open import foundation.span-diagrams
open import foundation.structure-identity-principle
open import foundation.torsorial-type-families
open import foundation.transport-along-higher-identifications
Expand Down Expand Up @@ -104,6 +105,13 @@ module _
( horizontal-map-dependent-cocone (f s))
( vertical-map-dependent-cocone (g s))
coherence-square-dependent-cocone = pr2 (pr2 d)

dependent-cocone-span-diagram :
{ l1 l2 l3 l4 l5 : Level} {𝒮 : span-diagram l1 l2 l3} {X : UU l4}
( c : cocone-span-diagram 𝒮 X) (P : X UU l5)
UU (l1 ⊔ l2 ⊔ l3 ⊔ l5)
dependent-cocone-span-diagram {𝒮 = 𝒮} =
dependent-cocone (left-map-span-diagram 𝒮) (right-map-span-diagram 𝒮)
```

### Cocones equipped with dependent cocones
Expand Down Expand Up @@ -188,6 +196,13 @@ pr1 (pr2 (dependent-cocone-map f g c P h)) b =
h (vertical-map-cocone f g c b)
pr2 (pr2 (dependent-cocone-map f g c P h)) s =
apd h (coherence-square-cocone f g c s)

dependent-cocone-map-span-diagram :
{ l1 l2 l3 l4 l5 : Level} {𝒮 : span-diagram l1 l2 l3} {X : UU l4}
( c : cocone-span-diagram 𝒮 X) (P : X UU l5)
( (x : X) P x) dependent-cocone-span-diagram c P
dependent-cocone-map-span-diagram {𝒮 = 𝒮} c =
dependent-cocone-map (left-map-span-diagram 𝒮) (right-map-span-diagram 𝒮) c
```

## Properties
Expand Down
Loading

0 comments on commit dafc57a

Please sign in to comment.