Skip to content

Commit

Permalink
Universal property of fibers (#944)
Browse files Browse the repository at this point in the history
Co-authored-by: Egbert Rijke <[email protected]>
  • Loading branch information
morphismz and EgbertRijke authored Dec 5, 2023
1 parent 3163bb8 commit dcc67bb
Show file tree
Hide file tree
Showing 25 changed files with 1,408 additions and 140 deletions.
1 change: 1 addition & 0 deletions src/foundation-core.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ open import foundation-core.endomorphisms public
open import foundation-core.equality-dependent-pair-types public
open import foundation-core.equivalence-relations public
open import foundation-core.equivalences public
open import foundation-core.families-of-equivalences public
open import foundation-core.fibers-of-maps public
open import foundation-core.function-types public
open import foundation-core.functoriality-dependent-function-types public
Expand Down
103 changes: 103 additions & 0 deletions src/foundation-core/families-of-equivalences.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
# Families of equivalences

```agda
module foundation-core.families-of-equivalences where
```

<details><summary>Imports</summary>

```agda
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.type-theoretic-principle-of-choice
```

</details>

## Idea

A **family of equivalences** is a family

```text
eᵢ : A i ≃ B i
```

of [equivalences](foundation-core.equivalences.md). Families of equivalences are
also called **fiberwise equivalences**.

## Definitions

### The predicate of being a fiberwise equivalence

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A UU l2} {C : A UU l3}
where

is-fiberwise-equiv : (f : (x : A) B x C x) UU (l1 ⊔ l2 ⊔ l3)
is-fiberwise-equiv f = (x : A) is-equiv (f x)
```

### Fiberwise equivalences

```agda
module _
{l1 l2 l3 : Level} {A : UU l1}
where

fiberwise-equiv : (B : A UU l2) (C : A UU l3) UU (l1 ⊔ l2 ⊔ l3)
fiberwise-equiv B C = Σ ((x : A) B x C x) is-fiberwise-equiv

map-fiberwise-equiv :
{B : A UU l2} {C : A UU l3}
fiberwise-equiv B C (a : A) B a C a
map-fiberwise-equiv = pr1

is-fiberwise-equiv-fiberwise-equiv :
{B : A UU l2} {C : A UU l3}
(e : fiberwise-equiv B C)
is-fiberwise-equiv (map-fiberwise-equiv e)
is-fiberwise-equiv-fiberwise-equiv = pr2
```

### Families of equivalences

```agda
module _
{l1 l2 l3 : Level} {A : UU l1}
where

fam-equiv : (B : A UU l2) (C : A UU l3) UU (l1 ⊔ l2 ⊔ l3)
fam-equiv B C = (x : A) B x ≃ C x

module _
{l1 l2 l3 : Level} {A : UU l1} {B : A UU l2} {C : A UU l3}
(e : fam-equiv B C)
where

map-fam-equiv : (x : A) B x C x
map-fam-equiv x = map-equiv (e x)

is-equiv-map-fam-equiv : is-fiberwise-equiv map-fam-equiv
is-equiv-map-fam-equiv x = is-equiv-map-equiv (e x)
```

## Properties

### Families of equivalences are equivalent to fiberwise equivalences

```agda
equiv-fiberwise-equiv-fam-equiv :
{l1 l2 l3 : Level} {A : UU l1} (B : A UU l2) (C : A UU l3)
fam-equiv B C ≃ fiberwise-equiv B C
equiv-fiberwise-equiv-fam-equiv B C = distributive-Π-Σ
```

## See also

- In
[Functoriality of dependent pair types](foundation-core.functoriality-dependent-pair-types.md)
we show that a family of maps is a fiberwise equivalence if and only if it
induces an equivalence on [total spaces](foundation.dependent-pair-types.md).
48 changes: 0 additions & 48 deletions src/foundation-core/fibers-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -366,54 +366,6 @@ module _
pr2 inv-compute-fiber-comp = is-equiv-inv-map-compute-fiber-comp
```

### When a product is taken over all fibers of a map, then we can equivalently take the product over the domain of that map

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A B)
(C : (y : B) (z : fiber f y) UU l3)
where

map-reduce-Π-fiber :
((y : B) (z : fiber f y) C y z) ((x : A) C (f x) (x , refl))
map-reduce-Π-fiber h x = h (f x) (x , refl)

inv-map-reduce-Π-fiber :
((x : A) C (f x) (x , refl)) ((y : B) (z : fiber f y) C y z)
inv-map-reduce-Π-fiber h .(f x) (x , refl) = h x

is-section-inv-map-reduce-Π-fiber :
(map-reduce-Π-fiber ∘ inv-map-reduce-Π-fiber) ~ id
is-section-inv-map-reduce-Π-fiber h = refl

is-retraction-inv-map-reduce-Π-fiber' :
(h : (y : B) (z : fiber f y) C y z) (y : B)
(inv-map-reduce-Π-fiber (map-reduce-Π-fiber h) y) ~ (h y)
is-retraction-inv-map-reduce-Π-fiber' h .(f z) (z , refl) = refl

is-retraction-inv-map-reduce-Π-fiber :
(inv-map-reduce-Π-fiber ∘ map-reduce-Π-fiber) ~ id
is-retraction-inv-map-reduce-Π-fiber h =
eq-htpy (eq-htpy ∘ is-retraction-inv-map-reduce-Π-fiber' h)

is-equiv-map-reduce-Π-fiber : is-equiv map-reduce-Π-fiber
is-equiv-map-reduce-Π-fiber =
is-equiv-is-invertible
( inv-map-reduce-Π-fiber)
( is-section-inv-map-reduce-Π-fiber)
( is-retraction-inv-map-reduce-Π-fiber)

reduce-Π-fiber' :
((y : B) (z : fiber f y) C y z) ≃ ((x : A) C (f x) (x , refl))
pr1 reduce-Π-fiber' = map-reduce-Π-fiber
pr2 reduce-Π-fiber' = is-equiv-map-reduce-Π-fiber

reduce-Π-fiber :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A B)
(C : B UU l3) ((y : B) fiber f y C y) ≃ ((x : A) C (f x))
reduce-Π-fiber f C = reduce-Π-fiber' f (λ y z C y)
```

## Table of files about fibers of maps

The following table lists files that are about fibers of maps as a general
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,14 +8,14 @@ module foundation-core.functoriality-dependent-function-types where

```agda
open import foundation.dependent-pair-types
open import foundation.families-of-equivalences
open import foundation.function-extensionality
open import foundation.implicit-function-types
open import foundation.universe-levels

open import foundation-core.contractible-maps
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.families-of-equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,13 @@ module foundation-core.functoriality-dependent-pair-types where

```agda
open import foundation.dependent-pair-types
open import foundation.families-of-equivalences
open import foundation.universe-levels

open import foundation-core.contractible-maps
open import foundation-core.contractible-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.families-of-equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.homotopies
Expand Down
2 changes: 1 addition & 1 deletion src/foundation-core/pullbacks.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@ open import foundation.action-on-identifications-functions
open import foundation.cones-over-cospans
open import foundation.dependent-pair-types
open import foundation.equality-cartesian-product-types
open import foundation.families-of-equivalences
open import foundation.functoriality-cartesian-product-types
open import foundation.functoriality-fibers-of-maps
open import foundation.identity-types
Expand All @@ -23,6 +22,7 @@ open import foundation-core.cartesian-product-types
open import foundation-core.diagonal-maps-of-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.families-of-equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
Expand Down
2 changes: 2 additions & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,7 @@ open import foundation.powersets public
open import foundation.precomposition-dependent-functions public
open import foundation.precomposition-functions public
open import foundation.precomposition-functions-into-subuniverses public
open import foundation.precomposition-type-families public
open import foundation.preidempotent-maps public
open import foundation.preimages-of-subtypes public
open import foundation.preunivalence public
Expand Down Expand Up @@ -350,6 +351,7 @@ open import foundation.universal-property-coproduct-types public
open import foundation.universal-property-dependent-pair-types public
open import foundation.universal-property-empty-type public
open import foundation.universal-property-equivalences public
open import foundation.universal-property-family-of-fibers-of-maps public
open import foundation.universal-property-fiber-products public
open import foundation.universal-property-identity-systems public
open import foundation.universal-property-identity-types public
Expand Down
3 changes: 2 additions & 1 deletion src/foundation/connected-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ open import foundation.truncation-levels
open import foundation.truncations
open import foundation.type-theoretic-principle-of-choice
open import foundation.univalence
open import foundation.universal-property-family-of-fibers-of-maps
open import foundation.universe-levels

open import foundation-core.contractible-maps
Expand Down Expand Up @@ -392,7 +393,7 @@ module _
( λ b
function-dependent-universal-property-trunc
( Id-Truncated-Type' (trunc k (fiber f b)) _))
( inv-map-reduce-Π-fiber f
( extend-lift-family-of-elements-fiber f
( λ b u _ = unit-trunc u)
( compute-center-is-connected-map-dependent-universal-property-connected-map))

Expand Down
2 changes: 1 addition & 1 deletion src/foundation/equality-fibers-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,13 +9,13 @@ module foundation.equality-fibers-of-maps where
```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.families-of-equivalences
open import foundation.identity-types
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.families-of-equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
Expand Down
1 change: 1 addition & 0 deletions src/foundation/equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ open import foundation-core.commuting-triangles-of-maps
open import foundation-core.contractible-maps
open import foundation-core.contractible-types
open import foundation-core.embeddings
open import foundation-core.families-of-equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
Expand Down
61 changes: 10 additions & 51 deletions src/foundation/families-of-equivalences.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,16 +2,17 @@

```agda
module foundation.families-of-equivalences where

open import foundation-core.families-of-equivalences public
```

<details><summary>Imports</summary>

```agda
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.universe-levels

open import foundation-core.equivalences
open import foundation-core.type-theoretic-principle-of-choice
open import foundation-core.propositions
```

</details>
Expand All @@ -27,61 +28,19 @@ A **family of equivalences** is a family
of [equivalences](foundation-core.equivalences.md). Families of equivalences are
also called **fiberwise equivalences**.

## Definitions

### The predicate of being a fiberwise equivalence

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : A UU l2} {C : A UU l3}
where

is-fiberwise-equiv : (f : (x : A) B x C x) UU (l1 ⊔ l2 ⊔ l3)
is-fiberwise-equiv f = (x : A) is-equiv (f x)
```

### Fiberwise equivalences

```agda
module _
{l1 l2 l3 : Level} {A : UU l1}
where

fiberwise-equiv : (B : A UU l2) (C : A UU l3) UU (l1 ⊔ l2 ⊔ l3)
fiberwise-equiv B C = Σ ((x : A) B x C x) is-fiberwise-equiv
```
## Properties

### Families of equivalences
### Being a fiberwise equivalence is a proposition

```agda
module _
{l1 l2 l3 : Level} {A : UU l1}
where

fam-equiv : (B : A UU l2) (C : A UU l3) UU (l1 ⊔ l2 ⊔ l3)
fam-equiv B C = (x : A) B x ≃ C x

module _
{l1 l2 l3 : Level} {A : UU l1} {B : A UU l2} {C : A UU l3}
(e : fam-equiv B C)
where

map-fam-equiv : (x : A) B x C x
map-fam-equiv x = map-equiv (e x)

is-equiv-map-fam-equiv : is-fiberwise-equiv map-fam-equiv
is-equiv-map-fam-equiv x = is-equiv-map-equiv (e x)
```

## Properties

### Families of equivalences are equivalent to fiberwise equivalences

```agda
equiv-fiberwise-equiv-fam-equiv :
{l1 l2 l3 : Level} {A : UU l1} (B : A UU l2) (C : A UU l3)
fam-equiv B C ≃ fiberwise-equiv B C
equiv-fiberwise-equiv-fam-equiv B C = distributive-Π-Σ
is-property-is-fiberwise-equiv :
(f : (a : A) B a C a) is-prop (is-fiberwise-equiv f)
is-property-is-fiberwise-equiv f =
is-prop-Π (λ a is-property-is-equiv (f a))
```

## See also
Expand Down
13 changes: 13 additions & 0 deletions src/foundation/function-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,19 @@ module _
( eq-htpy-refl-htpy (h (i s))))
```

### Composing families of functions

```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : A UU l2} {C : A UU l3}
{D : A UU l4}
where

dependent-comp :
((a : A) C a D a) ((a : A) B a C a) (a : A) B a D a
dependent-comp g f a b = g a (f a b)
```

## See also

### Table of files about function types, composition, and equivalences
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -8,11 +8,11 @@ module foundation.fundamental-theorem-of-identity-types where

```agda
open import foundation.dependent-pair-types
open import foundation.families-of-equivalences
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.families-of-equivalences
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
Expand Down
Loading

0 comments on commit dcc67bb

Please sign in to comment.