Skip to content

Commit

Permalink
chore: Universal properties of colimits quantify over all universe le…
Browse files Browse the repository at this point in the history
…vels (#1126)

Refactors all universal properties and induction principles of colimits
to quantify over all universe levels. This still leaves some lemmas
about pushout cocones in an awkward position, but I leave that for
future work.
  • Loading branch information
fredrik-bakke authored Apr 25, 2024
1 parent f095d75 commit de858a1
Show file tree
Hide file tree
Showing 30 changed files with 277 additions and 334 deletions.
6 changes: 3 additions & 3 deletions src/foundation/epimorphisms.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ module _

universal-property-pushout-is-epimorphism :
is-epimorphism f
{l : Level} universal-property-pushout l f f (cocone-codiagonal-map f)
universal-property-pushout f f (cocone-codiagonal-map f)
universal-property-pushout-is-epimorphism e X =
is-equiv-comp
( map-equiv (compute-total-fiber-precomp f X))
Expand Down Expand Up @@ -134,7 +134,7 @@ If the map `f : A → B` is epi, then its codiagonal is an equivalence.
```agda
is-epimorphism-universal-property-pushout-Level :
{l : Level}
universal-property-pushout l f f (cocone-codiagonal-map f)
universal-property-pushout-Level l f f (cocone-codiagonal-map f)
is-epimorphism-Level l f
is-epimorphism-universal-property-pushout-Level up-c X =
is-emb-is-contr-fibers-values
Expand All @@ -153,7 +153,7 @@ If the map `f : A → B` is epi, then its codiagonal is an equivalence.
( g)))

is-epimorphism-universal-property-pushout :
({l : Level} universal-property-pushout l f f (cocone-codiagonal-map f))
universal-property-pushout f f (cocone-codiagonal-map f)
is-epimorphism f
is-epimorphism-universal-property-pushout up-c =
is-epimorphism-universal-property-pushout-Level up-c
Expand Down
20 changes: 10 additions & 10 deletions src/synthetic-homotopy-theory/26-descent.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -218,7 +218,7 @@ triangle-desc-fam {l = l} {S} {A} {B} {X} (pair i (pair j H)) P =
is-equiv-desc-fam :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S A} {g : S B} (c : cocone f g X)
({l' : Level} universal-property-pushout l' f g c)
universal-property-pushout f g c
is-equiv (desc-fam {l = l} {f = f} {g} c)
is-equiv-desc-fam {l = l} {f = f} {g} c up-c =
is-equiv-left-map-triangle
Expand All @@ -232,7 +232,7 @@ is-equiv-desc-fam {l = l} {f = f} {g} c up-c =
equiv-desc-fam :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S A} {g : S B} (c : cocone f g X)
({l' : Level} universal-property-pushout l' f g c)
universal-property-pushout f g c
(X UU l) ≃ Fam-pushout l f g
equiv-desc-fam c up-c =
pair
Expand All @@ -246,7 +246,7 @@ equiv-desc-fam c up-c =
uniqueness-Fam-pushout :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
(f : S A) (g : S B) (c : cocone f g X)
({l' : Level} universal-property-pushout l' f g c)
universal-property-pushout f g c
( P : Fam-pushout l f g)
is-contr
( Σ (X UU l) (λ Q
Expand All @@ -262,24 +262,24 @@ uniqueness-Fam-pushout {l = l} f g c up-c P =
fam-Fam-pushout :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S A} {g : S B} (c : cocone f g X)
(up-X : {l' : Level} universal-property-pushout l' f g c)
Fam-pushout l f g (X UU l)
universal-property-pushout f g c
Fam-pushout l f g X UU l
fam-Fam-pushout {f = f} {g} c up-X P =
pr1 (center (uniqueness-Fam-pushout f g c up-X P))

is-section-fam-Fam-pushout :
{l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{f : S A} {g : S B} (c : cocone f g X)
(up-X : {l' : Level} universal-property-pushout l' f g c)
((desc-fam {l = l} c)(fam-Fam-pushout c up-X)) ~ id
(up-X : universal-property-pushout f g c)
desc-fam {l = l} c ∘ fam-Fam-pushout c up-X ~ id
is-section-fam-Fam-pushout {f = f} {g} c up-X P =
inv
( eq-equiv-Fam-pushout (pr2 (center (uniqueness-Fam-pushout f g c up-X P))))

compute-left-fam-Fam-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S A} {g : S B} (c : cocone f g X)
( up-X : {l' : Level} universal-property-pushout l' f g c)
( up-X : universal-property-pushout f g c)
( P : Fam-pushout l f g)
( a : A) (pr1 P a) ≃ (fam-Fam-pushout c up-X P (pr1 c a))
compute-left-fam-Fam-pushout {f = f} {g} c up-X P =
Expand All @@ -288,7 +288,7 @@ compute-left-fam-Fam-pushout {f = f} {g} c up-X P =
compute-right-fam-Fam-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S A} {g : S B} (c : cocone f g X)
( up-X : {l' : Level} universal-property-pushout l' f g c)
( up-X : universal-property-pushout f g c)
( P : Fam-pushout l f g)
( b : B) (pr1 (pr2 P) b) ≃ (fam-Fam-pushout c up-X P (pr1 (pr2 c) b))
compute-right-fam-Fam-pushout {f = f} {g} c up-X P =
Expand All @@ -297,7 +297,7 @@ compute-right-fam-Fam-pushout {f = f} {g} c up-X P =
compute-path-fam-Fam-pushout :
{ l1 l2 l3 l4 l : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S A} {g : S B} (c : cocone f g X)
( up-X : {l' : Level} universal-property-pushout l' f g c)
( up-X : universal-property-pushout f g c)
( P : Fam-pushout l f g)
( s : S)
( ( map-equiv (compute-right-fam-Fam-pushout c up-X P (g s))) ∘
Expand Down
12 changes: 6 additions & 6 deletions src/synthetic-homotopy-theory/26-id-pushout.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -247,7 +247,7 @@ triangle-hom-Fam-pushout-dependent-cocone {f = f} {g} c P Q h =
is-equiv-hom-Fam-pushout-map :
{ l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S A} {g : S B} (c : cocone f g X)
( up-X : {l : Level} universal-property-pushout l f g c)
( up-X : universal-property-pushout f g c)
( P : X UU l5) (Q : X UU l6)
is-equiv (hom-Fam-pushout-map c P Q)
is-equiv-hom-Fam-pushout-map {l5 = l5} {l6} {f = f} {g} c up-X P Q =
Expand All @@ -263,7 +263,7 @@ is-equiv-hom-Fam-pushout-map {l5 = l5} {l6} {f = f} {g} c up-X P Q =
equiv-hom-Fam-pushout-map :
{ l1 l2 l3 l4 l5 l6 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S A} {g : S B} (c : cocone f g X)
( up-X : {l : Level} universal-property-pushout l f g c)
( up-X : universal-property-pushout f g c)
( P : X UU l5) (Q : X UU l6)
( (x : X) P x Q x) ≃
hom-Fam-pushout (desc-fam c P) (desc-fam c Q)
Expand Down Expand Up @@ -308,7 +308,7 @@ triangle-is-universal-id-Fam-pushout' c a Q = refl-htpy
is-universal-id-Fam-pushout' :
{ l l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S A} {g : S B} (c : cocone f g X)
( up-X : {l' : Level} universal-property-pushout l' f g c) (a : A)
( up-X : universal-property-pushout f g c) (a : A)
( Q : (x : X) UU l)
is-equiv
( ev-point-hom-Fam-pushout
Expand All @@ -331,7 +331,7 @@ is-universal-id-Fam-pushout :
{ l1 l2 l3 l4 l : Level}
{ S : UU l1} {A : UU l2} {B : UU l3} {X : UU l4}
{ f : S A} {g : S B} (c : cocone f g X)
( up-X : {l' : Level} universal-property-pushout l' f g c) (a : A)
( up-X : universal-property-pushout f g c) (a : A)
is-universal-Fam-pushout l (desc-fam c (Id (pr1 c a))) a refl
is-universal-id-Fam-pushout {S = S} {A} {B} {X} {f} {g} c up-X a Q =
map-inv-equiv
Expand Down Expand Up @@ -440,7 +440,7 @@ equiv-is-equiv-hom-Fam-pushout P Q h is-equiv-h =
hom-identity-is-universal-Fam-pushout :
{ l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l5}
{ f : S → A} {g : S → B} (c : cocone f g X) →
( up-X : (l : Level) → universal-property-pushout l f g c) →
( up-X : universal-property-pushout f g c) →
( P : Fam-pushout l4 f g) (a : A) (p : pr1 P a) →
is-universal-Fam-pushout l5 P a p →
Σ ( hom-Fam-pushout P (desc-fam c (Id (pr1 c a))))
Expand All @@ -451,7 +451,7 @@ hom-identity-is-universal-Fam-pushout {f = f} {g} c up-X P a p is-univ-P =
is-identity-is-universal-Fam-pushout :
{ l1 l2 l3 l4 l5 : Level} {S : UU l1} {A : UU l2} {B : UU l3} {X : UU l5}
{ f : S → A} {g : S → B} (c : cocone f g X) →
( up-X : (l : Level) → universal-property-pushout l f g c) →
( up-X : universal-property-pushout f g c) →
( P : Fam-pushout l4 f g) (a : A) (p : pr1 P a) →
is-universal-Fam-pushout l5 P a p →
Σ ( equiv-Fam-pushout P (desc-fam c (Id (pr1 c a))))
Expand Down
11 changes: 5 additions & 6 deletions src/synthetic-homotopy-theory/circle.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ free-loop-𝕊¹ = base-𝕊¹ , loop-𝕊¹
𝕊¹-Pointed-Type = 𝕊¹ , base-𝕊¹

postulate
ind-𝕊¹ : {l : Level} induction-principle-circle l free-loop-𝕊¹
ind-𝕊¹ : induction-principle-circle free-loop-𝕊¹
```

## Properties
Expand All @@ -76,7 +76,7 @@ postulate

```agda
dependent-universal-property-𝕊¹ :
{l : Level} dependent-universal-property-circle l free-loop-𝕊¹
dependent-universal-property-circle free-loop-𝕊¹
dependent-universal-property-𝕊¹ =
dependent-universal-property-induction-principle-circle free-loop-𝕊¹ ind-𝕊¹

Expand Down Expand Up @@ -127,12 +127,11 @@ module _
### The universal property of the circle

```agda
universal-property-𝕊¹ :
{l : Level} universal-property-circle l free-loop-𝕊¹
universal-property-𝕊¹ : universal-property-circle free-loop-𝕊¹
universal-property-𝕊¹ =
universal-property-dependent-universal-property-circle
free-loop-𝕊¹
dependent-universal-property-𝕊¹
( free-loop-𝕊¹)
( dependent-universal-property-𝕊¹)

uniqueness-universal-property-𝕊¹ :
{l : Level} {X : UU l} (α : free-loop X)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -109,8 +109,7 @@ module _
cocone-hom-arrow f g hom-arrow-cocartesian-hom-arrow

universal-property-cocartesian-hom-arrow :
{l : Level}
universal-property-pushout l
universal-property-pushout
( f)
( map-domain-cocartesian-hom-arrow)
( cocone-cocartesian-hom-arrow)
Expand Down
5 changes: 2 additions & 3 deletions src/synthetic-homotopy-theory/codiagonals-of-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ module _
( terminal-map (fiber f b))
( terminal-map (fiber f b))
( fiber (codiagonal-map f) b))
( universal-property-pushout l
( universal-property-pushout-Level l
( terminal-map (fiber f b))
( terminal-map (fiber f b)))
universal-property-suspension-cocone-fiber =
Expand Down Expand Up @@ -121,8 +121,7 @@ module _
pr1 (universal-property-suspension-cocone-fiber {lzero})

universal-property-suspension-fiber :
{l : Level}
universal-property-pushout l
universal-property-pushout
( terminal-map (fiber f b))
( terminal-map (fiber f b))
( suspension-cocone-fiber)
Expand Down
7 changes: 2 additions & 5 deletions src/synthetic-homotopy-theory/coequalizers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,7 @@ module _
( horizontal-map-span-cocone-cofork a))

dup-standard-coequalizer :
{l : Level}
dependent-universal-property-coequalizer l a
( cofork-standard-coequalizer)
dependent-universal-property-coequalizer a cofork-standard-coequalizer
dup-standard-coequalizer =
dependent-universal-property-coequalizer-dependent-universal-property-pushout
( a)
Expand All @@ -105,8 +103,7 @@ module _
( P)))

up-standard-coequalizer :
{l : Level}
universal-property-coequalizer l a cofork-standard-coequalizer
universal-property-coequalizer a cofork-standard-coequalizer
up-standard-coequalizer =
universal-property-dependent-universal-property-coequalizer a
( cofork-standard-coequalizer)
Expand Down
4 changes: 2 additions & 2 deletions src/synthetic-homotopy-theory/cofibers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,8 +58,8 @@ module _
pr2 (cofiber-Pointed-Type f) = point-cofiber f

universal-property-cofiber :
(f : A B) {l : Level}
universal-property-pushout l f (terminal-map A) (cocone-cofiber f)
(f : A B)
universal-property-pushout f (terminal-map A) (cocone-cofiber f)
universal-property-cofiber f = up-pushout f (terminal-map A)
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -68,11 +68,11 @@ pr2 (pr2 (cone-dependent-pullback-property-pushout f g (i , j , H) P)) h =
eq-htpy (λ s apd h (H s))

dependent-pullback-property-pushout :
{l1 l2 l3 l4 : Level} (l : Level) {S : UU l1} {A : UU l2} {B : UU l3}
{l1 l2 l3 l4 : Level} {S : UU l1} {A : UU l2} {B : UU l3}
(f : S A) (g : S B) {X : UU l4} (c : cocone f g X)
UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l)
dependent-pullback-property-pushout l {S} {A} {B} f g {X} (i , j , H) =
(P : X UU l)
UUω
dependent-pullback-property-pushout {S = S} {A} {B} f g {X} (i , j , H) =
{l : Level} (P : X UU l)
is-pullback
( λ (h : (a : A) P (i a)) λ s tr P (H s) (h (f s)))
( λ (h : (b : B) P (j b)) λ s h (g s))
Expand Down Expand Up @@ -105,8 +105,8 @@ module _
where

pullback-property-dependent-pullback-property-pushout :
({l : Level} dependent-pullback-property-pushout l f g c)
({l : Level} pullback-property-pushout l f g c)
dependent-pullback-property-pushout f g c
pullback-property-pushout f g c
pullback-property-dependent-pullback-property-pushout dpp-c Y =
is-pullback-htpy
( λ h
Expand Down Expand Up @@ -222,7 +222,7 @@ pullback property.

is-pullback-cone-family-dependent-pullback-family :
{l : Level} (P : X UU l)
({l : Level} pullback-property-pushout l f g c)
pullback-property-pushout f g c
: X X)
is-pullback
( ( tr
Expand Down Expand Up @@ -271,8 +271,8 @@ pullback property.
( pp-c (Σ X P)))

dependent-pullback-property-pullback-property-pushout :
({l : Level} pullback-property-pushout l f g c)
({l : Level} dependent-pullback-property-pushout l f g c)
pullback-property-pushout f g c
dependent-pullback-property-pushout f g c
dependent-pullback-property-pullback-property-pushout pp-c P =
is-pullback-htpy'
( ( tr-lift-family-of-elements-precomp P id
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -44,18 +44,18 @@ dependent-cofork-map : ((x : X) → P x) → dependent-cocone e P.

```agda
module _
{l1 l2 l3 : Level} (l : Level) (a : double-arrow l1 l2) {X : UU l3}
{l1 l2 l3 : Level} (a : double-arrow l1 l2) {X : UU l3}
(e : cofork a X)
where

dependent-universal-property-coequalizer : UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l)
dependent-universal-property-coequalizer : UUω
dependent-universal-property-coequalizer =
(P : X UU l) is-equiv (dependent-cofork-map a e {P = P})
{l : Level} (P : X UU l) is-equiv (dependent-cofork-map a e {P = P})

module _
{l1 l2 l3 l4 : Level} (a : double-arrow l1 l2) {X : UU l3}
(e : cofork a X) {P : X UU l4}
(dup-coequalizer : dependent-universal-property-coequalizer l4 a e)
(dup-coequalizer : dependent-universal-property-coequalizer a e)
where

map-dependent-universal-property-coequalizer :
Expand All @@ -73,7 +73,7 @@ module _
module _
{l1 l2 l3 l4 : Level} (a : double-arrow l1 l2) {X : UU l3}
(e : cofork a X) {P : X UU l4}
(dup-coequalizer : dependent-universal-property-coequalizer l4 a e)
(dup-coequalizer : dependent-universal-property-coequalizer a e)
(k : dependent-cofork a e P)
where

Expand Down Expand Up @@ -127,13 +127,11 @@ module _
where

dependent-universal-property-coequalizer-dependent-universal-property-pushout :
({l : Level}
dependent-universal-property-pushout l
( vertical-map-span-cocone-cofork a)
( horizontal-map-span-cocone-cofork a)
( cocone-codiagonal-cofork a e))
({l : Level}
dependent-universal-property-coequalizer l a e)
dependent-universal-property-pushout
( vertical-map-span-cocone-cofork a)
( horizontal-map-span-cocone-cofork a)
( cocone-codiagonal-cofork a e)
dependent-universal-property-coequalizer a e
dependent-universal-property-coequalizer-dependent-universal-property-pushout
( dup-pushout)
( P) =
Expand All @@ -150,13 +148,11 @@ module _
( is-equiv-dependent-cofork-dependent-cocone-codiagonal a e P)

dependent-universal-property-pushout-dependent-universal-property-coequalizer :
({l : Level}
dependent-universal-property-coequalizer l a e)
({l : Level}
dependent-universal-property-pushout l
( vertical-map-span-cocone-cofork a)
( horizontal-map-span-cocone-cofork a)
( cocone-codiagonal-cofork a e))
dependent-universal-property-coequalizer a e
dependent-universal-property-pushout
( vertical-map-span-cocone-cofork a)
( horizontal-map-span-cocone-cofork a)
( cocone-codiagonal-cofork a e)
dependent-universal-property-pushout-dependent-universal-property-coequalizer
( dup-coequalizer)
( P) =
Expand All @@ -182,8 +178,8 @@ module _
where

universal-property-dependent-universal-property-coequalizer :
({l : Level} dependent-universal-property-coequalizer l a e)
({l : Level} universal-property-coequalizer l a e)
dependent-universal-property-coequalizer a e
universal-property-coequalizer a e
universal-property-dependent-universal-property-coequalizer
( dup-coequalizer)
( Y) =
Expand All @@ -197,8 +193,8 @@ module _
( compute-dependent-cofork-constant-family a e Y))

dependent-universal-property-universal-property-coequalizer :
({l : Level} universal-property-coequalizer l a e)
({l : Level} dependent-universal-property-coequalizer l a e)
universal-property-coequalizer a e
dependent-universal-property-coequalizer a e
dependent-universal-property-universal-property-coequalizer up-coequalizer =
dependent-universal-property-coequalizer-dependent-universal-property-pushout
( a)
Expand Down
Loading

0 comments on commit de858a1

Please sign in to comment.