Skip to content

Commit

Permalink
Level-universe compatibility patch (#862)
Browse files Browse the repository at this point in the history
Makes the repository compatible with the new `--level-universe` flag
introduced with Agda 2.6.4.
  • Loading branch information
fredrik-bakke authored Oct 19, 2023
1 parent d18b7a4 commit e310e00
Show file tree
Hide file tree
Showing 39 changed files with 106 additions and 83 deletions.
2 changes: 1 addition & 1 deletion src/category-theory/functors-large-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ There is an identity functor on any large category.
id-functor-Large-Category :
{αC : Level Level} {βC : Level Level Level}
(C : Large-Category αC βC)
functor-Large-Category id C C
functor-Large-Category (λ l l) C C
id-functor-Large-Category C =
id-functor-Large-Precategory (large-precategory-Large-Category C)
```
Expand Down
4 changes: 2 additions & 2 deletions src/category-theory/functors-large-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ module _
id-functor-Large-Precategory :
{αC : Level Level} {βC : Level Level Level}
(C : Large-Precategory αC βC)
functor-Large-Precategory id C C
functor-Large-Precategory (λ l l) C C
obj-functor-Large-Precategory
( id-functor-Large-Precategory C) =
id
Expand Down Expand Up @@ -152,7 +152,7 @@ module _
( preserves-id-functor-Large-Precategory G)

comp-functor-Large-Precategory :
functor-Large-Precategory (γG ∘ γF) C E
functor-Large-Precategory (λ l γG (γF l)) C E
obj-functor-Large-Precategory
comp-functor-Large-Precategory =
obj-comp-functor-Large-Precategory
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ module _

```agda
group-of-units-commutative-ring-functor-Large-Precategory :
functor-Large-Precategory id
functor-Large-Precategory (λ l l)
( Commutative-Ring-Large-Precategory)
( Ab-Large-Precategory)
obj-functor-Large-Precategory
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,8 @@ module _
preserves-order-ideal-radical-ideal-Commutative-Ring I J H = H

ideal-radical-ideal-hom-large-poset-Commutative-Ring :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( radical-ideal-Commutative-Ring-Large-Poset A)
( ideal-Commutative-Ring-Large-Poset A)
map-hom-Large-Preorder
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,8 @@ module _
( H))

radical-of-ideal-hom-large-poset-Commutative-Ring :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( ideal-Commutative-Ring-Large-Poset A)
( radical-ideal-Commutative-Ring-Large-Poset A)
map-hom-Large-Preorder
Expand Down Expand Up @@ -276,7 +277,7 @@ module _
is-radical-of-ideal-radical-of-ideal-Commutative-Ring A I J

radical-of-ideal-galois-connection-Commutative-Ring :
galois-connection-Large-Poset id id
galois-connection-Large-Poset (λ l l) (λ l l)
( ideal-Commutative-Ring-Large-Poset A)
( radical-ideal-Commutative-Ring-Large-Poset A)
lower-adjoint-galois-connection-Large-Poset
Expand Down
8 changes: 5 additions & 3 deletions src/foundation-core/functoriality-function-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -290,15 +290,17 @@ is-equiv-is-equiv-precomp-Prop :
({l : Level} (R : Prop l) is-equiv (precomp f (type-Prop R)))
is-equiv f
is-equiv-is-equiv-precomp-Prop P Q f H =
is-equiv-is-equiv-precomp-subuniverse id (λ l is-prop) P Q f (λ l H {l})
is-equiv-is-equiv-precomp-subuniverse
( λ l l) (λ l is-prop) P Q f (λ l H {l})

is-equiv-is-equiv-precomp-Set :
{l1 l2 : Level} (A : Set l1) (B : Set l2)
(f : type-Set A type-Set B)
({l : Level} (C : Set l) is-equiv (precomp f (type-Set C)))
is-equiv f
is-equiv-is-equiv-precomp-Set A B f H =
is-equiv-is-equiv-precomp-subuniverse id (λ l is-set) A B f (λ l H {l})
is-equiv-is-equiv-precomp-subuniverse
( λ l l) (λ l is-set) A B f (λ l H {l})

is-equiv-is-equiv-precomp-Truncated-Type :
{l1 l2 : Level} (k : 𝕋)
Expand All @@ -307,7 +309,7 @@ is-equiv-is-equiv-precomp-Truncated-Type :
({l : Level} (C : Truncated-Type l k) is-equiv (precomp f (pr1 C)))
is-equiv f
is-equiv-is-equiv-precomp-Truncated-Type k A B f H =
is-equiv-is-equiv-precomp-subuniverse id (λ l is-trunc k) A B f
is-equiv-is-equiv-precomp-subuniverse (λ l l) (λ l is-trunc k) A B f
( λ l H {l})
```

Expand Down
2 changes: 1 addition & 1 deletion src/foundation/connected-components-universes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ abstract
is-contr-component-UU-Level-empty lzero
```

### The connected components of universes are 0 connected
### The connected components of universes are `0`-connected

```agda
abstract
Expand Down
3 changes: 1 addition & 2 deletions src/foundation/subuniverses.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -143,8 +143,7 @@ module _
: Level Level) (P : global-subuniverse α)
where

is-in-global-subuniverse :
{l : Level} UU l UU (α l)
is-in-global-subuniverse : {l : Level} UU l UU (α l)
is-in-global-subuniverse X =
is-in-subuniverse (subuniverse-global-subuniverse P _) X
```
Expand Down
4 changes: 3 additions & 1 deletion src/group-theory/cores-monoids.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -226,7 +226,9 @@ module _

```agda
core-monoid-functor-Large-Precategory :
functor-Large-Precategory id Monoid-Large-Precategory Group-Large-Precategory
functor-Large-Precategory (λ l l)
Monoid-Large-Precategory
Group-Large-Precategory
obj-functor-Large-Precategory
core-monoid-functor-Large-Precategory =
core-Monoid
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/normal-closures-subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -252,7 +252,7 @@ module _
normal-closure-Galois-Connection :
galois-connection-Large-Poset
( λ l2 l1 ⊔ l2)
( id)
( λ l l)
( Subgroup-Large-Poset G)
( Normal-Subgroup-Large-Poset G)
normal-closure-Galois-Connection =
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/normal-cores-subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ module _

normal-core-subgroup-Galois-Connection :
galois-connection-Large-Poset
( id)
( λ l l)
( λ l2 l1 ⊔ l2)
( Normal-Subgroup-Large-Poset G)
( Subgroup-Large-Poset G)
Expand Down
3 changes: 2 additions & 1 deletion src/group-theory/normal-subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -382,7 +382,8 @@ preserves-order-subgroup-Normal-Subgroup G N M = id

subgroup-normal-subgroup-hom-Large-Poset :
{l1 : Level} (G : Group l1)
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( Normal-Subgroup-Large-Poset G)
( Subgroup-Large-Poset G)
subgroup-normal-subgroup-hom-Large-Poset G =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -373,7 +373,7 @@ module _
subgroup-subset-galois-connection-Group :
galois-connection-Large-Poset
( λ l2 l1 ⊔ l2)
( id)
( λ l l)
( powerset-Large-Poset (type-Group G))
( Subgroup-Large-Poset G)
lower-adjoint-galois-connection-Large-Poset
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -490,7 +490,7 @@ preserves-order-subset-Subgroup G H K = id
subset-subgroup-hom-large-poset-Group :
{l1 : Level} (G : Group l1)
hom-set-Large-Poset
( id)
( λ l l)
( Subgroup-Large-Poset G)
( powerset-Large-Poset (type-Group G))
map-hom-Large-Preorder
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ module _
preserves-comp-subst-Abstract-Group-Action X Y Z g f = refl

subst-Abstract-Group-Action :
functor-Large-Precategory id
functor-Large-Precategory (λ l l)
( Abstract-Group-Action-Large-Precategory H)
( Abstract-Group-Action-Large-Precategory G)
obj-functor-Large-Precategory subst-Abstract-Group-Action =
Expand Down
3 changes: 2 additions & 1 deletion src/order-theory/closure-operators-large-locales.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,8 @@ module _
where

hom-large-poset-closure-operator-Large-Locale :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( large-poset-Large-Locale L)
( large-poset-Large-Locale L)
hom-large-poset-closure-operator-Large-Locale =
Expand Down
2 changes: 1 addition & 1 deletion src/order-theory/closure-operators-large-posets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ module _
where
field
hom-closure-operator-Large-Poset :
hom-set-Large-Poset id P P
hom-set-Large-Poset (λ l l) P P
is-inflationary-closure-operator-Large-Poset :
{l1 : Level} (x : type-Large-Poset P l1)
leq-Large-Poset P x
Expand Down
4 changes: 2 additions & 2 deletions src/order-theory/galois-connections-large-posets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ open import order-theory.order-preserving-maps-large-posets
A **galois connection** between [large posets](order-theory.large-posets.md) `P`
and `Q` consists of
[order preserving maps](order-theory.order-preserving-maps-large-posets.md)
`f : hom-set-Large-Poset id P Q` and `hom-set-Large-Poset id Q P` such that the
adjoint relation
`f : hom-set-Large-Poset (λ l l) P Q` and `hom-set-Large-Poset id Q P` such
that the adjoint relation

```text
(f x ≤ y) ↔ (x ≤ g y)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,8 @@ module _
where
field
hom-large-poset-hom-Large-Meet-Semilattice :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( large-poset-Large-Meet-Semilattice K)
( large-poset-Large-Meet-Semilattice L)
preserves-meets-hom-Large-Meet-Semilattice :
Expand Down
6 changes: 4 additions & 2 deletions src/order-theory/homomorphisms-large-suplattices.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@ module _
where

preserves-sup-hom-Large-Poset :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( large-poset-Large-Suplattice K)
( large-poset-Large-Suplattice L)
UUω
Expand All @@ -59,7 +60,8 @@ module _
where
field
hom-large-poset-hom-Large-Suplattice :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( large-poset-Large-Suplattice K)
( large-poset-Large-Suplattice L)
preserves-sup-hom-Large-Suplattice :
Expand Down
4 changes: 2 additions & 2 deletions src/order-theory/nuclei-large-locales.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,8 @@ open import order-theory.least-upper-bounds-large-posets
## Idea

A **nucleus** on a [large locale](order-theory.large-locales.md) `L` is an order
preserving map `j : hom-set-Large-Poset id L L` such that `j` preserves meets
and is inflationary and idempotent.
preserving map `j : hom-set-Large-Poset (λ l l) L L` such that `j` preserves
meets and is inflationary and idempotent.

## Definitions

Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/ideals-generated-by-subsets-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -385,7 +385,7 @@ module _

ideal-subset-galois-connection-Ring :
galois-connection-Large-Poset
( _⊔_ l1) id
( _⊔_ l1) (λ l l)
( powerset-Large-Poset (type-Ring A))
( ideal-Ring-Large-Poset A)
lower-adjoint-galois-connection-Large-Poset
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -341,7 +341,7 @@ module _

left-ideal-subset-galois-connection-Ring :
galois-connection-Large-Poset
( _⊔_ l1) id
( l1 ⊔_) (λ l l)
( powerset-Large-Poset (type-Ring A))
( left-ideal-Ring-Large-Poset A)
lower-adjoint-galois-connection-Large-Poset
Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/poset-of-ideals-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ module _

subset-ideal-hom-large-poset-Ring :
hom-set-Large-Poset
( id)
( λ l l)
( ideal-Ring-Large-Poset R)
( powerset-Large-Poset (type-Ring R))
map-hom-Large-Preorder subset-ideal-hom-large-poset-Ring =
Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/poset-of-left-ideals-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -162,7 +162,7 @@ module _

subset-left-ideal-hom-large-poset-Ring :
hom-set-Large-Poset
( id)
( λ l l)
( left-ideal-Ring-Large-Poset R)
( powerset-Large-Poset (type-Ring R))
map-hom-Large-Preorder subset-left-ideal-hom-large-poset-Ring =
Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/poset-of-right-ideals-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ module _

subset-right-ideal-hom-large-poset-Ring :
hom-set-Large-Poset
( id)
( λ l l)
( right-ideal-Ring-Large-Poset R)
( powerset-Large-Poset (type-Ring R))
map-hom-Large-Preorder subset-right-ideal-hom-large-poset-Ring =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -339,7 +339,7 @@ module _

right-ideal-subset-galois-connection-Ring :
galois-connection-Large-Poset
( _⊔_ l1) id
( l1 ⊔_) (λ l l)
( powerset-Large-Poset (type-Ring A))
( right-ideal-Ring-Large-Poset A)
lower-adjoint-galois-connection-Large-Poset
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ coefficients of the composite of the Cauchy series of `S` and `T`.
module _
{l1 l2 : Level}
(P : subuniverse l1 l2)
(Q : global-subuniverse id)
(Q : global-subuniverse (λ l l))
where

type-cauchy-composition-species-subuniverse :
Expand All @@ -83,13 +83,13 @@ module _
( S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
( T : species-subuniverse P (subuniverse-global-subuniverse Q l4))
( X : type-subuniverse P)
is-in-global-subuniverse id Q
is-in-global-subuniverse (λ l l) Q
( type-cauchy-composition-species-subuniverse S T X)

module _
{l1 l2 l3 l4 : Level}
(P : subuniverse l1 l2)
(Q : global-subuniverse id)
(Q : global-subuniverse (λ l l))
(C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
(C2 : is-closed-under-Σ-subuniverse P)
(S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
Expand All @@ -112,7 +112,7 @@ module _
module _
{l1 l2 l3 l4 : Level}
(P : subuniverse l1 l2)
(Q : global-subuniverse id)
(Q : global-subuniverse (λ l l))
(C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
(C2 : is-closed-under-Σ-subuniverse P)
(S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
Expand Down Expand Up @@ -185,7 +185,7 @@ module _

```agda
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id)
{l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l l))
( C3 : is-in-subuniverse P (raise-unit l1))
( C4 :
is-closed-under-is-contr-subuniverses P
Expand Down Expand Up @@ -249,7 +249,7 @@ module _
module _
{ l1 l2 l3 : Level}
( P : subuniverse l1 l2)
( Q : global-subuniverse id)
( Q : global-subuniverse (λ l l))
( C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
( C2 : is-closed-under-Σ-subuniverse P)
( C3 : is-in-subuniverse P (raise-unit l1))
Expand Down Expand Up @@ -366,7 +366,7 @@ module _
module _
{ l1 l2 l3 l4 l5 : Level}
( P : subuniverse l1 l2)
( Q : global-subuniverse id)
( Q : global-subuniverse (λ l l))
( C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
( C2 : is-closed-under-Σ-subuniverse P)
( S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
Expand Down
Loading

0 comments on commit e310e00

Please sign in to comment.