Skip to content

Commit

Permalink
Change the universal property of epimorphisms, so that it is stated w…
Browse files Browse the repository at this point in the history
…ith respect to all universe levels (#917)
  • Loading branch information
tomdjong authored Nov 13, 2023
1 parent e632ce1 commit eaa955f
Show file tree
Hide file tree
Showing 2 changed files with 25 additions and 24 deletions.
12 changes: 6 additions & 6 deletions src/foundation/epimorphisms-with-respect-to-sets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,10 +38,10 @@ every set `C` the precomposition function `(B → C) → (A → C)` is an embedd

```agda
is-epimorphism-Set :
{l1 l2 : Level} (l : Level) {A : UU l1} {B : UU l2}
(f : A B) UU (l1 ⊔ l2 ⊔ lsuc l)
is-epimorphism-Set l f =
is-epimorphism-Truncated-Type l zero-𝕋 f
{l1 l2 : Level} {A : UU l1} {B : UU l2}
(f : A B) UUω
is-epimorphism-Set f =
is-epimorphism-Truncated-Type zero-𝕋 f
```

## Properties
Expand All @@ -52,7 +52,7 @@ is-epimorphism-Set l f =
abstract
is-epimorphism-is-surjective-Set :
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A B}
is-surjective f {l : Level} is-epimorphism-Set l f
is-surjective f is-epimorphism-Set f
is-epimorphism-is-surjective-Set H C =
is-emb-is-injective
( is-set-function-type (is-set-type-Set C))
Expand All @@ -73,7 +73,7 @@ abstract
abstract
is-surjective-is-epimorphism-Set :
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A B}
({l : Level} is-epimorphism-Set l f) is-surjective f
is-epimorphism-Set f is-surjective f
is-surjective-is-epimorphism-Set {l1} {l2} {A} {B} {f} H b =
map-equiv
( equiv-eq
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,10 +41,11 @@ is an embedding for every `k`-truncated type `X`.

```agda
is-epimorphism-Truncated-Type :
{l1 l2 : Level} (l : Level) (k : 𝕋) {A : UU l1} {B : UU l2}
(A B) UU (l1 ⊔ l2 ⊔ lsuc l)
is-epimorphism-Truncated-Type l k f =
(X : Truncated-Type l k) is-emb (precomp f (type-Truncated-Type X))
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2}
(A B) UUω
is-epimorphism-Truncated-Type k f =
{l : Level} (X : Truncated-Type l k)
is-emb (precomp f (type-Truncated-Type X))
```

## Properties
Expand All @@ -53,19 +54,19 @@ is-epimorphism-Truncated-Type l k f =

```agda
is-epimorphism-is-epimorphism-succ-Truncated-Type :
{l1 l2 : Level} (l : Level) (k : 𝕋) {A : UU l1} {B : UU l2} (f : A B)
is-epimorphism-Truncated-Type l (succ-𝕋 k) f
is-epimorphism-Truncated-Type l k f
is-epimorphism-is-epimorphism-succ-Truncated-Type l k f H X =
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A B)
is-epimorphism-Truncated-Type (succ-𝕋 k) f
is-epimorphism-Truncated-Type k f
is-epimorphism-is-epimorphism-succ-Truncated-Type k f H X =
H (truncated-type-succ-Truncated-Type k X)
```

### Every map is a `-1`-epimorphism

```agda
is-neg-one-epimorphism :
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A B)
is-epimorphism-Truncated-Type l3 neg-one-𝕋 f
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A B)
is-epimorphism-Truncated-Type neg-one-𝕋 f
is-neg-one-epimorphism f P =
is-emb-is-prop
( is-prop-function-type (is-prop-type-Prop P))
Expand All @@ -76,23 +77,23 @@ is-neg-one-epimorphism f P =

```agda
is-epimorphism-is-truncation-equivalence-Truncated-Type :
{l1 l2 : Level} (l : Level) (k : 𝕋) {A : UU l1} {B : UU l2} (f : A B)
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A B)
is-truncation-equivalence k f
is-epimorphism-Truncated-Type l k f
is-epimorphism-is-truncation-equivalence-Truncated-Type l k f H X =
is-epimorphism-Truncated-Type k f
is-epimorphism-is-truncation-equivalence-Truncated-Type k f H X =
is-emb-is-equiv (is-equiv-precomp-is-truncation-equivalence k f H X)
```

### A map is a `k`-epimorphism if and only if its `k`-truncation is a `k`-epimorphism

```agda
module _
{l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A B)
{l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A B)
where

is-epimorphism-is-epimorphism-map-trunc-Truncated-Type :
is-epimorphism-Truncated-Type l3 k (map-trunc k f)
is-epimorphism-Truncated-Type l3 k f
is-epimorphism-Truncated-Type k (map-trunc k f)
is-epimorphism-Truncated-Type k f
is-epimorphism-is-epimorphism-map-trunc-Truncated-Type H X =
is-emb-bottom-is-emb-top-is-equiv-coherence-square-maps
( precomp (map-trunc k f) (type-Truncated-Type X))
Expand All @@ -111,8 +112,8 @@ module _
( H X)

is-epimorphism-map-trunc-is-epimorphism-Truncated-Type :
is-epimorphism-Truncated-Type l3 k f
is-epimorphism-Truncated-Type l3 k (map-trunc k f)
is-epimorphism-Truncated-Type k f
is-epimorphism-Truncated-Type k (map-trunc k f)
is-epimorphism-map-trunc-is-epimorphism-Truncated-Type H X =
is-emb-top-is-emb-bottom-is-equiv-coherence-square-maps
( precomp (map-trunc k f) (type-Truncated-Type X))
Expand Down

0 comments on commit eaa955f

Please sign in to comment.