Skip to content

Commit

Permalink
Refactor categories to carry a bidirectional witness of associativity (
Browse files Browse the repository at this point in the history
  • Loading branch information
fredrik-bakke authored Nov 27, 2023
1 parent 7de16af commit f4d078e
Show file tree
Hide file tree
Showing 89 changed files with 1,582 additions and 271 deletions.
1 change: 1 addition & 0 deletions src/category-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,7 @@ open import category-theory.natural-transformations-maps-precategories public
open import category-theory.nonunital-precategories public
open import category-theory.one-object-precategories public
open import category-theory.opposite-categories public
open import category-theory.opposite-large-precategories public
open import category-theory.opposite-precategories public
open import category-theory.opposite-preunivalent-categories public
open import category-theory.precategories public
Expand Down
37 changes: 31 additions & 6 deletions src/category-theory/augmented-simplex-category.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,27 +68,52 @@ associative-comp-hom-augmented-simplex-Category :
(h : hom-augmented-simplex-Category r s)
(g : hom-augmented-simplex-Category m r)
(f : hom-augmented-simplex-Category n m)
( comp-hom-augmented-simplex-Category {n} {m} {s}
comp-hom-augmented-simplex-Category {n} {m} {s}
( comp-hom-augmented-simplex-Category {m} {r} {s} h g)
( f))
( comp-hom-augmented-simplex-Category {n} {r} {s}
( f) =
comp-hom-augmented-simplex-Category {n} {r} {s}
( h)
( comp-hom-augmented-simplex-Category {n} {m} {r} g f))
( comp-hom-augmented-simplex-Category {n} {m} {r} g f)
associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} =
associative-comp-hom-Poset
( Fin-Poset n)
( Fin-Poset m)
( Fin-Poset r)
( Fin-Poset s)

inv-associative-comp-hom-augmented-simplex-Category :
{n m r s : obj-augmented-simplex-Category}
(h : hom-augmented-simplex-Category r s)
(g : hom-augmented-simplex-Category m r)
(f : hom-augmented-simplex-Category n m)
comp-hom-augmented-simplex-Category {n} {r} {s}
( h)
( comp-hom-augmented-simplex-Category {n} {m} {r} g f) =
comp-hom-augmented-simplex-Category {n} {m} {s}
( comp-hom-augmented-simplex-Category {m} {r} {s} h g)
( f)
inv-associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} =
inv-associative-comp-hom-Poset
( Fin-Poset n)
( Fin-Poset m)
( Fin-Poset r)
( Fin-Poset s)

associative-composition-operation-augmented-simplex-Category :
associative-composition-operation-binary-family-Set
hom-set-augmented-simplex-Category
pr1 associative-composition-operation-augmented-simplex-Category {n} {m} {r} =
comp-hom-augmented-simplex-Category {n} {m} {r}
pr1
( pr2
associative-composition-operation-augmented-simplex-Category
{ n} {m} {r} {s} h g f) =
associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} h g f
pr2
associative-composition-operation-augmented-simplex-Category {n} {m} {r} {s} =
associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s}
( pr2
associative-composition-operation-augmented-simplex-Category
{ n} {m} {r} {s} h g f) =
inv-associative-comp-hom-augmented-simplex-Category {n} {m} {r} {s} h g f

id-hom-augmented-simplex-Category :
(n : obj-augmented-simplex-Category) hom-augmented-simplex-Category n n
Expand Down
10 changes: 10 additions & 0 deletions src/category-theory/categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,16 @@ module _
associative-comp-hom-Category =
associative-comp-hom-Precategory precategory-Category

inv-associative-comp-hom-Category :
{x y z w : obj-Category}
(h : hom-Category z w)
(g : hom-Category y z)
(f : hom-Category x y)
comp-hom-Category h (comp-hom-Category g f) =
comp-hom-Category (comp-hom-Category h g) f
inv-associative-comp-hom-Category =
inv-associative-comp-hom-Precategory precategory-Category

associative-composition-operation-Category :
associative-composition-operation-binary-family-Set hom-set-Category
associative-composition-operation-Category =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,13 @@ module _

### Associative composition operations in binary families of sets

We give a slightly non-standard definition of associativity, requiring an
associativity witness in each direction. This is of course redundant as `inv` is
a [fibered involution](foundation.fibered-involutions.md) on
[identity types](foundation-core.identity-types.md). However, by recording both
directions we maintain a definitional double inverse law which is practical in
defining the [opposite category](category-theory.opposite-categories.md).

```agda
module _
{l1 l2 : Level} {A : UU l1} (hom-set : A A Set l2)
Expand All @@ -64,12 +71,86 @@ module _
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
comp-hom (comp-hom h g) f = comp-hom h (comp-hom g f)
( comp-hom (comp-hom h g) f = comp-hom h (comp-hom g f)) ×
( comp-hom h (comp-hom g f) = comp-hom (comp-hom h g) f)

associative-composition-operation-binary-family-Set : UU (l1 ⊔ l2)
associative-composition-operation-binary-family-Set =
Σ ( composition-operation-binary-family-Set hom-set)
( is-associative-composition-operation-binary-family-Set)

module _
{l1 l2 : Level} {A : UU l1} (hom-set : A A Set l2)
(H : associative-composition-operation-binary-family-Set hom-set)
where

comp-hom-associative-composition-operation-binary-family-Set :
composition-operation-binary-family-Set hom-set
comp-hom-associative-composition-operation-binary-family-Set = pr1 H

witness-associative-composition-operation-binary-family-Set :
{x y z w : A}
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
( comp-hom-associative-composition-operation-binary-family-Set
( comp-hom-associative-composition-operation-binary-family-Set h g) (f)) =
( comp-hom-associative-composition-operation-binary-family-Set
( h) (comp-hom-associative-composition-operation-binary-family-Set g f))
witness-associative-composition-operation-binary-family-Set h g f =
pr1 (pr2 H h g f)

inv-witness-associative-composition-operation-binary-family-Set :
{x y z w : A}
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
( comp-hom-associative-composition-operation-binary-family-Set
( h) (comp-hom-associative-composition-operation-binary-family-Set g f)) =
( comp-hom-associative-composition-operation-binary-family-Set
( comp-hom-associative-composition-operation-binary-family-Set h g) (f))
inv-witness-associative-composition-operation-binary-family-Set h g f =
pr2 (pr2 H h g f)
```

```agda
module _
{l1 l2 : Level} {A : UU l1}
(hom-set : A A Set l2)
(comp-hom : composition-operation-binary-family-Set hom-set)
where

is-associative-witness-associative-composition-operation-binary-family-Set :
( {x y z w : A}
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
comp-hom (comp-hom h g) f = comp-hom h (comp-hom g f))
is-associative-composition-operation-binary-family-Set hom-set comp-hom
pr1
( is-associative-witness-associative-composition-operation-binary-family-Set
H h g f) =
H h g f
pr2
( is-associative-witness-associative-composition-operation-binary-family-Set
H h g f) =
inv (H h g f)

is-associative-inv-witness-associative-composition-operation-binary-family-Set :
( {x y z w : A}
(h : type-Set (hom-set z w))
(g : type-Set (hom-set y z))
(f : type-Set (hom-set x y))
comp-hom h (comp-hom g f) = comp-hom (comp-hom h g) f)
is-associative-composition-operation-binary-family-Set hom-set comp-hom
pr1
( is-associative-inv-witness-associative-composition-operation-binary-family-Set
H h g f) =
inv (H h g f)
pr2
( is-associative-inv-witness-associative-composition-operation-binary-family-Set
H h g f) =
H h g f
```

### Unital composition operations in binary families of sets
Expand Down Expand Up @@ -106,10 +187,15 @@ module _
( λ x y z w
is-prop-iterated-Π 3
( λ h g f
is-set-type-Set
( hom-set x w)
( comp-hom (comp-hom h g) f)
( comp-hom h (comp-hom g f))))
is-prop-prod
( is-set-type-Set
( hom-set x w)
( comp-hom (comp-hom h g) f)
( comp-hom h (comp-hom g f)))
( is-set-type-Set
( hom-set x w)
( comp-hom h (comp-hom g f))
( comp-hom (comp-hom h g) f))))

is-associative-prop-composition-operation-binary-family-Set : Prop (l1 ⊔ l2)
pr1 is-associative-prop-composition-operation-binary-family-Set =
Expand Down
23 changes: 23 additions & 0 deletions src/category-theory/copresheaf-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,29 @@ module _
{ Z}
{ W}

inv-associative-comp-hom-copresheaf-Large-Category :
{l3 l4 l5 l6 : Level}
(X : obj-copresheaf-Large-Category l3)
(Y : obj-copresheaf-Large-Category l4)
(Z : obj-copresheaf-Large-Category l5)
(W : obj-copresheaf-Large-Category l6)
(h : hom-copresheaf-Large-Category Z W)
(g : hom-copresheaf-Large-Category Y Z)
(f : hom-copresheaf-Large-Category X Y)
comp-hom-copresheaf-Large-Category X Z W
( h)
( comp-hom-copresheaf-Large-Category X Y Z g f) =
comp-hom-copresheaf-Large-Category X Y W
( comp-hom-copresheaf-Large-Category Y Z W h g)
( f)
inv-associative-comp-hom-copresheaf-Large-Category X Y Z W =
inv-associative-comp-hom-Large-Precategory
( copresheaf-Large-Precategory)
{ X = X}
{ Y}
{ Z}
{ W}

left-unit-law-comp-hom-copresheaf-Large-Category :
{l3 l4 : Level}
(X : obj-copresheaf-Large-Category l3)
Expand Down
14 changes: 12 additions & 2 deletions src/category-theory/dependent-products-of-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -80,11 +80,21 @@ module _
(h : hom-Π-Category z w)
(g : hom-Π-Category y z)
(f : hom-Π-Category x y)
( comp-hom-Π-Category (comp-hom-Π-Category h g) f)
( comp-hom-Π-Category h (comp-hom-Π-Category g f))
comp-hom-Π-Category (comp-hom-Π-Category h g) f =
comp-hom-Π-Category h (comp-hom-Π-Category g f)
associative-comp-hom-Π-Category =
associative-comp-hom-Category Π-Category

inv-associative-comp-hom-Π-Category :
{x y z w : obj-Π-Category}
(h : hom-Π-Category z w)
(g : hom-Π-Category y z)
(f : hom-Π-Category x y)
comp-hom-Π-Category h (comp-hom-Π-Category g f) =
comp-hom-Π-Category (comp-hom-Π-Category h g) f
inv-associative-comp-hom-Π-Category =
inv-associative-comp-hom-Category Π-Category

associative-composition-operation-Π-Category :
associative-composition-operation-binary-family-Set hom-set-Π-Category
associative-composition-operation-Π-Category =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -93,11 +93,25 @@ module _
(h : hom-Π-Large-Category z w)
(g : hom-Π-Large-Category y z)
(f : hom-Π-Large-Category x y)
( comp-hom-Π-Large-Category (comp-hom-Π-Large-Category h g) f)
( comp-hom-Π-Large-Category h (comp-hom-Π-Large-Category g f))
comp-hom-Π-Large-Category (comp-hom-Π-Large-Category h g) f =
comp-hom-Π-Large-Category h (comp-hom-Π-Large-Category g f)
associative-comp-hom-Π-Large-Category =
associative-comp-hom-Large-Category Π-Large-Category

inv-associative-comp-hom-Π-Large-Category :
{l2 l3 l4 l5 : Level}
{x : obj-Π-Large-Category l2}
{y : obj-Π-Large-Category l3}
{z : obj-Π-Large-Category l4}
{w : obj-Π-Large-Category l5}
(h : hom-Π-Large-Category z w)
(g : hom-Π-Large-Category y z)
(f : hom-Π-Large-Category x y)
comp-hom-Π-Large-Category h (comp-hom-Π-Large-Category g f) =
comp-hom-Π-Large-Category (comp-hom-Π-Large-Category h g) f
inv-associative-comp-hom-Π-Large-Category =
inv-associative-comp-hom-Large-Category Π-Large-Category

id-hom-Π-Large-Category :
{l2 : Level} {x : obj-Π-Large-Category l2}
hom-Π-Large-Category x x
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,22 @@ module _
eq-htpy
( λ i associative-comp-hom-Large-Precategory (C i) (h i) (g i) (f i))

inv-associative-comp-hom-Π-Large-Precategory :
{l2 l3 l4 l5 : Level}
{x : obj-Π-Large-Precategory l2}
{y : obj-Π-Large-Precategory l3}
{z : obj-Π-Large-Precategory l4}
{w : obj-Π-Large-Precategory l5}
(h : hom-Π-Large-Precategory z w)
(g : hom-Π-Large-Precategory y z)
(f : hom-Π-Large-Precategory x y)
( comp-hom-Π-Large-Precategory h (comp-hom-Π-Large-Precategory g f)) =
( comp-hom-Π-Large-Precategory (comp-hom-Π-Large-Precategory h g) f)
inv-associative-comp-hom-Π-Large-Precategory h g f =
eq-htpy
( λ i
inv-associative-comp-hom-Large-Precategory (C i) (h i) (g i) (f i))

id-hom-Π-Large-Precategory :
{l2 : Level} {x : obj-Π-Large-Precategory l2} hom-Π-Large-Precategory x x
id-hom-Π-Large-Precategory i = id-hom-Large-Precategory (C i)
Expand All @@ -101,26 +117,21 @@ module _

Π-Large-Precategory :
Large-Precategory (λ l2 l1 ⊔ α l2) (λ l2 l3 l1 ⊔ β l2 l3)
obj-Large-Precategory
Π-Large-Precategory =
obj-Large-Precategory Π-Large-Precategory =
obj-Π-Large-Precategory
hom-set-Large-Precategory
Π-Large-Precategory =
hom-set-Large-Precategory Π-Large-Precategory =
hom-set-Π-Large-Precategory
comp-hom-Large-Precategory
Π-Large-Precategory =
comp-hom-Large-Precategory Π-Large-Precategory =
comp-hom-Π-Large-Precategory
id-hom-Large-Precategory
Π-Large-Precategory =
id-hom-Large-Precategory Π-Large-Precategory =
id-hom-Π-Large-Precategory
associative-comp-hom-Large-Precategory
Π-Large-Precategory =
associative-comp-hom-Large-Precategory Π-Large-Precategory =
associative-comp-hom-Π-Large-Precategory
left-unit-law-comp-hom-Large-Precategory
Π-Large-Precategory =
inv-associative-comp-hom-Large-Precategory Π-Large-Precategory =
inv-associative-comp-hom-Π-Large-Precategory
left-unit-law-comp-hom-Large-Precategory Π-Large-Precategory =
left-unit-law-comp-hom-Π-Large-Precategory
right-unit-law-comp-hom-Large-Precategory
Π-Large-Precategory =
right-unit-law-comp-hom-Large-Precategory Π-Large-Precategory =
right-unit-law-comp-hom-Π-Large-Precategory
```

Expand Down
16 changes: 14 additions & 2 deletions src/category-theory/dependent-products-of-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -64,11 +64,23 @@ module _
associative-comp-hom-Π-Precategory h g f =
eq-htpy (λ i associative-comp-hom-Precategory (C i) (h i) (g i) (f i))

inv-associative-comp-hom-Π-Precategory :
{x y z w : obj-Π-Precategory}
(h : hom-Π-Precategory z w)
(g : hom-Π-Precategory y z)
(f : hom-Π-Precategory x y)
( comp-hom-Π-Precategory h (comp-hom-Π-Precategory g f)) =
( comp-hom-Π-Precategory (comp-hom-Π-Precategory h g) f)
inv-associative-comp-hom-Π-Precategory h g f =
eq-htpy (λ i inv-associative-comp-hom-Precategory (C i) (h i) (g i) (f i))

associative-composition-operation-Π-Precategory :
associative-composition-operation-binary-family-Set hom-set-Π-Precategory
pr1 associative-composition-operation-Π-Precategory = comp-hom-Π-Precategory
pr2 associative-composition-operation-Π-Precategory =
associative-comp-hom-Π-Precategory
pr1 (pr2 associative-composition-operation-Π-Precategory h g f) =
associative-comp-hom-Π-Precategory h g f
pr2 (pr2 associative-composition-operation-Π-Precategory h g f) =
inv-associative-comp-hom-Π-Precategory h g f

id-hom-Π-Precategory : {x : obj-Π-Precategory} hom-Π-Precategory x x
id-hom-Π-Precategory i = id-hom-Precategory (C i)
Expand Down
3 changes: 2 additions & 1 deletion src/category-theory/discrete-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,8 @@ module _
pr1 (pr2 discrete-precategory-Set) x y =
set-Prop (x = y , is-set-type-Set X x y)
pr1 (pr1 (pr2 (pr2 discrete-precategory-Set))) = concat' _
pr2 (pr1 (pr2 (pr2 discrete-precategory-Set))) refl refl refl = refl
pr1 (pr2 (pr1 (pr2 (pr2 discrete-precategory-Set))) refl refl refl) = refl
pr2 (pr2 (pr1 (pr2 (pr2 discrete-precategory-Set))) refl refl refl) = refl
pr1 (pr2 (pr2 (pr2 discrete-precategory-Set))) x = refl
pr1 (pr2 (pr2 (pr2 (pr2 discrete-precategory-Set)))) _ = right-unit
pr2 (pr2 (pr2 (pr2 (pr2 discrete-precategory-Set)))) _ = left-unit
Expand Down
Loading

0 comments on commit f4d078e

Please sign in to comment.