-
Notifications
You must be signed in to change notification settings - Fork 74
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Profile typechecking performance #1031
Conversation
Does typechecking with profiling take measurably longer? I think I'd rather have all CI builds with perf information. |
|
Alternatively, we now have the Ubuntu runner generate Markdown with syntax highlighting (for linkchecking), so we could use the Mac runner to compile with profiling instead |
Oh right, caching is a problem |
You don't happen to have a good solution for how to manage a graph for the profiling data? |
I've never used it, but I've seen some projects use this action https://github.com/benchmark-action/github-action-benchmark From a quick skim of the readme, you store the historical data in the cache, give the action a JSON with current performance data, and it can generate graphs and comment on the PR. Worth looking into IMO. |
Again, it seems to me we won't be able to test this workflow before we merge into the master branch. Would you be available to assist me a little with this tomorrow @VojtechStep? |
Here's an example of what the json file that is generated looks like [
{
"name": "bytes_allocated_in_heap",
"value": 25716.30834197998,
"unit": "MiB"
},
{
"name": "bytes_copied_during_GC",
"value": 7057.416763305664,
"unit": "MiB"
},
{
"name": "maximum_residency",
"value": 1185.245460510254,
"unit": "MiB"
},
{
"name": "bytes_maximum_slop",
"value": 1.0803985595703125,
"unit": "MiB"
},
{
"name": "total_memory_in_use",
"value": 2333,
"unit": "MiB"
},
{
"name": "Total",
"value": 392223,
"unit": "ms"
},
{
"name": "Miscellaneous",
"value": 22966,
"unit": "ms"
},
{
"name": "category-theory.category-of-functors-from-small-to-large-categories",
"value": 10555,
"unit": "ms"
},
{
"name": "univalent-combinatorics.orientations-complete-undirected-graph",
"value": 8065,
"unit": "ms"
},
{
"name": "universal-algebra.quotient-algebras",
"value": 7738,
"unit": "ms"
},
{
"name": "finite-group-theory.orbits-permutations",
"value": 6725,
"unit": "ms"
},
{
"name": "finite-group-theory.delooping-sign-homomorphism",
"value": 5991,
"unit": "ms"
},
{
"name": "foundation.pullbacks",
"value": 5699,
"unit": "ms"
},
{
"name": "category-theory.category-of-maps-from-small-to-large-categories",
"value": 5043,
"unit": "ms"
},
{
"name": "foundation.commuting-cubes-of-maps",
"value": 3566,
"unit": "ms"
},
{
"name": "finite-group-theory.transpositions",
"value": 3319,
"unit": "ms"
},
{
"name": "everything",
"value": 3250,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.universal-property-pushouts",
"value": 2785,
"unit": "ms"
},
{
"name": "foundation-core.pullbacks",
"value": 2674,
"unit": "ms"
},
{
"name": "foundation.commuting-prisms-of-maps",
"value": 2393,
"unit": "ms"
},
{
"name": "elementary-number-theory.bezouts-lemma-natural-numbers",
"value": 2233,
"unit": "ms"
},
{
"name": "foundation.equivalence-relations",
"value": 2093,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.orthogonal-maps",
"value": 2043,
"unit": "ms"
},
{
"name": "univalent-combinatorics.counting-dependent-pair-types",
"value": 2040,
"unit": "ms"
},
{
"name": "univalent-combinatorics.2-element-decidable-subtypes",
"value": 2029,
"unit": "ms"
},
{
"name": "foundation.commuting-squares-of-maps",
"value": 1987,
"unit": "ms"
},
{
"name": "type-theories.dependent-type-theories",
"value": 1911,
"unit": "ms"
},
{
"name": "univalent-combinatorics.pi-finite-types",
"value": 1821,
"unit": "ms"
},
{
"name": "foundation.functoriality-dependent-pair-types",
"value": 1753,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.functoriality-sequential-colimits",
"value": 1719,
"unit": "ms"
},
{
"name": "univalent-combinatorics.2-element-types",
"value": 1515,
"unit": "ms"
},
{
"name": "trees.underlying-trees-elements-coalgebras-polynomial-endofunctors",
"value": 1418,
"unit": "ms"
},
{
"name": "finite-group-theory.simpson-delooping-sign-homomorphism",
"value": 1405,
"unit": "ms"
},
{
"name": "foundation.homotopies-morphisms-arrows",
"value": 1395,
"unit": "ms"
},
{
"name": "type-theories.fibered-dependent-type-theories",
"value": 1350,
"unit": "ms"
},
{
"name": "category-theory.slice-precategories",
"value": 1330,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.flattening-lemma-pushouts",
"value": 1314,
"unit": "ms"
},
{
"name": "foundation.retracts-of-maps",
"value": 1299,
"unit": "ms"
},
{
"name": "univalent-combinatorics.binomial-types",
"value": 1292,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.26-id-pushout",
"value": 1226,
"unit": "ms"
},
{
"name": "polytopes.abstract-polytopes",
"value": 1208,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.modal-subuniverse-induction",
"value": 1198,
"unit": "ms"
},
{
"name": "foundation.universal-property-set-quotients",
"value": 1187,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.universal-cover-circle",
"value": 1142,
"unit": "ms"
},
{
"name": "set-theory.cumulative-hierarchy",
"value": 1131,
"unit": "ms"
},
{
"name": "foundation.functoriality-fibers-of-maps",
"value": 1125,
"unit": "ms"
},
{
"name": "type-theories.simple-type-theories",
"value": 1125,
"unit": "ms"
},
{
"name": "foundation.sigma-decompositions",
"value": 1094,
"unit": "ms"
},
{
"name": "foundation.yoneda-identity-types",
"value": 1086,
"unit": "ms"
},
{
"name": "category-theory.natural-isomorphisms-functors-categories",
"value": 1072,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.hatchers-acyclic-type",
"value": 1056,
"unit": "ms"
},
{
"name": "finite-group-theory.permutations-standard-finite-types",
"value": 1036,
"unit": "ms"
},
{
"name": "structured-types.pointed-equivalences",
"value": 1027,
"unit": "ms"
},
{
"name": "elementary-number-theory.modular-arithmetic-standard-finite-types",
"value": 1011,
"unit": "ms"
},
{
"name": "category-theory.natural-isomorphisms-functors-precategories",
"value": 1004,
"unit": "ms"
},
{
"name": "foundation.functoriality-coproduct-types",
"value": 972,
"unit": "ms"
},
{
"name": "foundation.surjective-maps",
"value": 957,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.truncated-acyclic-maps",
"value": 935,
"unit": "ms"
},
{
"name": "elementary-number-theory.modular-arithmetic",
"value": 928,
"unit": "ms"
},
{
"name": "category-theory.natural-isomorphisms-maps-precategories",
"value": 919,
"unit": "ms"
},
{
"name": "foundation.relaxed-sigma-decompositions",
"value": 915,
"unit": "ms"
},
{
"name": "category-theory.natural-isomorphisms-maps-categories",
"value": 901,
"unit": "ms"
},
{
"name": "foundation.commuting-squares-of-identifications",
"value": 885,
"unit": "ms"
},
{
"name": "commutative-algebra.products-ideals-commutative-rings",
"value": 882,
"unit": "ms"
},
{
"name": "species.small-cauchy-composition-species-of-types-in-subuniverses",
"value": 880,
"unit": "ms"
},
{
"name": "foundation.coproduct-decompositions",
"value": 877,
"unit": "ms"
},
{
"name": "foundation.binary-functoriality-set-quotients",
"value": 875,
"unit": "ms"
},
{
"name": "finite-group-theory.transpositions-standard-finite-types",
"value": 863,
"unit": "ms"
},
{
"name": "group-theory.quotient-groups",
"value": 836,
"unit": "ms"
},
{
"name": "commutative-algebra.groups-of-units-commutative-rings",
"value": 822,
"unit": "ms"
},
{
"name": "category-theory.isomorphisms-in-large-precategories",
"value": 820,
"unit": "ms"
},
{
"name": "ring-theory.isomorphisms-rings",
"value": 817,
"unit": "ms"
},
{
"name": "foundation.telescopes",
"value": 816,
"unit": "ms"
},
{
"name": "ring-theory.groups-of-units-rings",
"value": 816,
"unit": "ms"
},
{
"name": "species.cauchy-composition-species-of-types-in-subuniverses",
"value": 814,
"unit": "ms"
},
{
"name": "trees.combinator-directed-trees",
"value": 810,
"unit": "ms"
},
{
"name": "category-theory.isomorphisms-in-precategories",
"value": 803,
"unit": "ms"
},
{
"name": "foundation.higher-homotopies-morphisms-arrows",
"value": 803,
"unit": "ms"
},
{
"name": "species.cauchy-products-species-of-types-in-subuniverses",
"value": 798,
"unit": "ms"
},
{
"name": "trees.combinator-enriched-directed-trees",
"value": 794,
"unit": "ms"
},
{
"name": "trees.equivalences-enriched-directed-trees",
"value": 791,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.suspensions-of-types",
"value": 786,
"unit": "ms"
},
{
"name": "foundation.path-algebra",
"value": 785,
"unit": "ms"
},
{
"name": "foundation-core.equivalences",
"value": 784,
"unit": "ms"
},
{
"name": "species.dirichlet-products-species-of-types-in-subuniverses",
"value": 783,
"unit": "ms"
},
{
"name": "foundation.cartesian-products-set-quotients",
"value": 779,
"unit": "ms"
},
{
"name": "univalent-combinatorics.cyclic-finite-types",
"value": 759,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.universal-property-coequalizers",
"value": 759,
"unit": "ms"
},
{
"name": "order-theory.finitely-graded-posets",
"value": 756,
"unit": "ms"
},
{
"name": "trees.underlying-trees-of-elements-of-w-types",
"value": 754,
"unit": "ms"
},
{
"name": "univalent-combinatorics.sigma-decompositions",
"value": 752,
"unit": "ms"
},
{
"name": "graph-theory.walks-directed-graphs",
"value": 751,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.26-descent",
"value": 740,
"unit": "ms"
},
{
"name": "foundation.partitions",
"value": 734,
"unit": "ms"
},
{
"name": "group-theory.subgroups",
"value": 729,
"unit": "ms"
},
{
"name": "foundation.fibered-maps",
"value": 728,
"unit": "ms"
},
{
"name": "foundation.equivalences",
"value": 726,
"unit": "ms"
},
{
"name": "elementary-number-theory.fundamental-theorem-of-arithmetic",
"value": 719,
"unit": "ms"
},
{
"name": "finite-group-theory.sign-homomorphism",
"value": 718,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.pushouts",
"value": 718,
"unit": "ms"
},
{
"name": "foundation.vectors-set-quotients",
"value": 705,
"unit": "ms"
},
{
"name": "group-theory.loop-groups-sets",
"value": 692,
"unit": "ms"
},
{
"name": "category-theory.isomorphisms-in-categories",
"value": 688,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.smash-products-of-pointed-types",
"value": 678,
"unit": "ms"
},
{
"name": "finite-group-theory.abstract-quaternion-group",
"value": 673,
"unit": "ms"
},
{
"name": "commutative-algebra.joins-radical-ideals-commutative-rings",
"value": 669,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.acyclic-maps",
"value": 667,
"unit": "ms"
},
{
"name": "foundation.coproduct-decompositions-subuniverse",
"value": 666,
"unit": "ms"
},
{
"name": "graph-theory.equivalences-directed-graphs",
"value": 663,
"unit": "ms"
},
{
"name": "ring-theory.rings",
"value": 662,
"unit": "ms"
},
{
"name": "foundation-core.commuting-prisms-of-maps",
"value": 661,
"unit": "ms"
},
{
"name": "group-theory.subgroups-generated-by-subsets-groups",
"value": 659,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-universal-property-pushouts",
"value": 659,
"unit": "ms"
},
{
"name": "foundation.truncations",
"value": 658,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.modal-induction",
"value": 649,
"unit": "ms"
},
{
"name": "category-theory.adjunctions-large-precategories",
"value": 647,
"unit": "ms"
},
{
"name": "foundation.computational-identity-types",
"value": 638,
"unit": "ms"
},
{
"name": "category-theory.subprecategories",
"value": 638,
"unit": "ms"
},
{
"name": "category-theory.isomorphisms-in-large-categories",
"value": 632,
"unit": "ms"
},
{
"name": "univalent-combinatorics.distributivity-of-set-truncation-over-finite-products",
"value": 630,
"unit": "ms"
},
{
"name": "group-theory.abelian-groups",
"value": 628,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-coforks",
"value": 627,
"unit": "ms"
},
{
"name": "group-theory.normal-subgroups",
"value": 627,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-generated-subgroups",
"value": 625,
"unit": "ms"
},
{
"name": "order-theory.galois-connections",
"value": 624,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.lifting-structures-on-squares",
"value": 624,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-pullback-property-pushouts",
"value": 622,
"unit": "ms"
},
{
"name": "foundation.fibered-equivalences",
"value": 622,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.suspension-structures",
"value": 622,
"unit": "ms"
},
{
"name": "elementary-number-theory.divisibility-integers",
"value": 622,
"unit": "ms"
},
{
"name": "category-theory.subcategories",
"value": 611,
"unit": "ms"
},
{
"name": "group-theory.generating-elements-groups",
"value": 606,
"unit": "ms"
},
{
"name": "foundation.universal-property-image",
"value": 602,
"unit": "ms"
},
{
"name": "foundation.pi-decompositions",
"value": 601,
"unit": "ms"
},
{
"name": "foundation.exponents-set-quotients",
"value": 599,
"unit": "ms"
},
{
"name": "group-theory.normal-submonoids",
"value": 598,
"unit": "ms"
},
{
"name": "species.cauchy-composition-species-of-types",
"value": 598,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.cocones-under-spans",
"value": 595,
"unit": "ms"
},
{
"name": "foundation.set-quotients",
"value": 592,
"unit": "ms"
},
{
"name": "foundation.universal-property-pullbacks",
"value": 590,
"unit": "ms"
},
{
"name": "elementary-number-theory.multiplication-integers",
"value": 589,
"unit": "ms"
},
{
"name": "foundation-core.commuting-squares-of-maps",
"value": 588,
"unit": "ms"
},
{
"name": "group-theory.torsors",
"value": 587,
"unit": "ms"
},
{
"name": "group-theory.subgroups-abelian-groups",
"value": 585,
"unit": "ms"
},
{
"name": "trees.directed-trees",
"value": 583,
"unit": "ms"
},
{
"name": "foundation.uniqueness-image",
"value": 582,
"unit": "ms"
},
{
"name": "univalent-combinatorics.finite-types",
"value": 580,
"unit": "ms"
},
{
"name": "elementary-number-theory.rational-numbers",
"value": 578,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.pullback-hom",
"value": 578,
"unit": "ms"
},
{
"name": "species.cauchy-exponentials-species-of-types-in-subuniverses",
"value": 567,
"unit": "ms"
},
{
"name": "foundation.descent-coproduct-types",
"value": 567,
"unit": "ms"
},
{
"name": "foundation.embeddings",
"value": 565,
"unit": "ms"
},
{
"name": "trees.equivalences-directed-trees",
"value": 562,
"unit": "ms"
},
{
"name": "foundation.unordered-pairs",
"value": 554,
"unit": "ms"
},
{
"name": "trees.w-types",
"value": 551,
"unit": "ms"
},
{
"name": "commutative-algebra.eisenstein-integers",
"value": 548,
"unit": "ms"
},
{
"name": "elementary-number-theory.bezouts-lemma-integers",
"value": 534,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-cocones-under-sequential-diagrams",
"value": 532,
"unit": "ms"
},
{
"name": "foundation.equivalences-maybe",
"value": 532,
"unit": "ms"
},
{
"name": "category-theory.functors-precategories",
"value": 530,
"unit": "ms"
},
{
"name": "foundation.product-decompositions-subuniverse",
"value": 526,
"unit": "ms"
},
{
"name": "species.dirichlet-exponentials-species-of-types-in-subuniverses",
"value": 523,
"unit": "ms"
},
{
"name": "foundation.truncation-equivalences",
"value": 521,
"unit": "ms"
},
{
"name": "group-theory.groups",
"value": 520,
"unit": "ms"
},
{
"name": "category-theory.precategory-of-functors",
"value": 519,
"unit": "ms"
},
{
"name": "finite-algebra.finite-rings",
"value": 518,
"unit": "ms"
},
{
"name": "ring-theory.binomial-theorem-semirings",
"value": 515,
"unit": "ms"
},
{
"name": "foundation",
"value": 514,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.extensions-of-maps",
"value": 514,
"unit": "ms"
},
{
"name": "category-theory.fully-faithful-functors-precategories",
"value": 511,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.functoriality-suspensions",
"value": 510,
"unit": "ms"
},
{
"name": "group-theory.integer-powers-of-elements-groups",
"value": 509,
"unit": "ms"
},
{
"name": "category-theory.precategory-of-maps-precategories",
"value": 503,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.circle",
"value": 503,
"unit": "ms"
},
{
"name": "ring-theory.ideals-rings",
"value": 502,
"unit": "ms"
},
{
"name": "foundation.decidable-equivalence-relations",
"value": 500,
"unit": "ms"
},
{
"name": "category-theory.wide-subcategories",
"value": 498,
"unit": "ms"
},
{
"name": "foundation.set-truncations",
"value": 498,
"unit": "ms"
},
{
"name": "category-theory.dependent-products-of-categories",
"value": 498,
"unit": "ms"
},
{
"name": "foundation.invertible-maps",
"value": 496,
"unit": "ms"
},
{
"name": "category-theory.structure-equivalences-set-magmoids",
"value": 494,
"unit": "ms"
},
{
"name": "group-theory.normal-submonoids-commutative-monoids",
"value": 490,
"unit": "ms"
},
{
"name": "ring-theory.right-ideals-generated-by-subsets-rings",
"value": 489,
"unit": "ms"
},
{
"name": "ring-theory.ideals-generated-by-subsets-rings",
"value": 487,
"unit": "ms"
},
{
"name": "order-theory.galois-connections-large-posets",
"value": 484,
"unit": "ms"
},
{
"name": "reflection.precategory-solver",
"value": 482,
"unit": "ms"
},
{
"name": "foundation.strictly-involutive-identity-types",
"value": 480,
"unit": "ms"
},
{
"name": "foundation.functoriality-set-quotients",
"value": 479,
"unit": "ms"
},
{
"name": "univalent-combinatorics.main-classes-of-latin-hypercubes",
"value": 479,
"unit": "ms"
},
{
"name": "set-theory.countable-sets",
"value": 477,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.flattening-lemma-coequalizers",
"value": 477,
"unit": "ms"
},
{
"name": "foundation.functoriality-set-truncation",
"value": 474,
"unit": "ms"
},
{
"name": "foundation-core.functoriality-dependent-pair-types",
"value": 473,
"unit": "ms"
},
{
"name": "univalent-combinatorics.standard-finite-types",
"value": 472,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-maps-from-small-to-large-precategories",
"value": 470,
"unit": "ms"
},
{
"name": "ring-theory.left-ideals-generated-by-subsets-rings",
"value": 468,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.coforks",
"value": 463,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-functors-from-small-to-large-precategories",
"value": 461,
"unit": "ms"
},
{
"name": "foundation.arithmetic-law-product-and-pi-decompositions",
"value": 461,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-functors-precategories",
"value": 461,
"unit": "ms"
},
{
"name": "category-theory.replete-subprecategories",
"value": 460,
"unit": "ms"
},
{
"name": "foundation.connected-maps",
"value": 457,
"unit": "ms"
},
{
"name": "linear-algebra.vectors",
"value": 457,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.function-classes",
"value": 454,
"unit": "ms"
},
{
"name": "finite-group-theory.permutations",
"value": 452,
"unit": "ms"
},
{
"name": "graph-theory.walks-undirected-graphs",
"value": 452,
"unit": "ms"
},
{
"name": "foundation.arithmetic-law-coproduct-and-sigma-decompositions",
"value": 451,
"unit": "ms"
},
{
"name": "foundation.slice",
"value": 449,
"unit": "ms"
},
{
"name": "ring-theory.cyclic-rings",
"value": 443,
"unit": "ms"
},
{
"name": "structured-types.pointed-homotopies",
"value": 439,
"unit": "ms"
},
{
"name": "group-theory.cores-monoids",
"value": 439,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.flattening-lemma-sequential-colimits",
"value": 434,
"unit": "ms"
},
{
"name": "finite-algebra.commutative-finite-rings",
"value": 430,
"unit": "ms"
},
{
"name": "commutative-algebra.euclidean-domains",
"value": 429,
"unit": "ms"
},
{
"name": "foundation.homotopies",
"value": 426,
"unit": "ms"
},
{
"name": "trees.morphisms-enriched-directed-trees",
"value": 424,
"unit": "ms"
},
{
"name": "foundation.cones-over-cospan-diagrams",
"value": 423,
"unit": "ms"
},
{
"name": "group-theory.equivalences-group-actions",
"value": 421,
"unit": "ms"
},
{
"name": "foundation.functoriality-dependent-function-types",
"value": 421,
"unit": "ms"
},
{
"name": "elementary-number-theory.addition-integers",
"value": 418,
"unit": "ms"
},
{
"name": "category-theory.wide-subprecategories",
"value": 413,
"unit": "ms"
},
{
"name": "foundation.type-arithmetic-dependent-pair-types",
"value": 413,
"unit": "ms"
},
{
"name": "category-theory.category-of-functors",
"value": 413,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.eckmann-hilton-argument",
"value": 412,
"unit": "ms"
},
{
"name": "trees.bases-directed-trees",
"value": 404,
"unit": "ms"
},
{
"name": "foundation.composition-algebra",
"value": 403,
"unit": "ms"
},
{
"name": "commutative-algebra.commutative-rings",
"value": 400,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.higher-modalities",
"value": 398,
"unit": "ms"
},
{
"name": "foundation.epimorphisms-with-respect-to-truncated-types",
"value": 398,
"unit": "ms"
},
{
"name": "category-theory.category-of-maps-categories",
"value": 396,
"unit": "ms"
},
{
"name": "category-theory.function-categories",
"value": 395,
"unit": "ms"
},
{
"name": "organic-chemistry.ethane",
"value": 392,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-cocones-under-spans",
"value": 391,
"unit": "ms"
},
{
"name": "ring-theory.integer-multiples-of-elements-rings",
"value": 388,
"unit": "ms"
},
{
"name": "category-theory.functors-set-magmoids",
"value": 388,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.joins-of-types",
"value": 384,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-suspension-structures",
"value": 382,
"unit": "ms"
},
{
"name": "trees.extensional-w-types",
"value": 380,
"unit": "ms"
},
{
"name": "structured-types.morphisms-h-spaces",
"value": 378,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.sections-descent-circle",
"value": 376,
"unit": "ms"
},
{
"name": "foundation.decidable-embeddings",
"value": 376,
"unit": "ms"
},
{
"name": "finite-group-theory.subgroups-finite-groups",
"value": 371,
"unit": "ms"
},
{
"name": "group-theory.conjugation",
"value": 370,
"unit": "ms"
},
{
"name": "trees.functoriality-combinator-directed-trees",
"value": 369,
"unit": "ms"
},
{
"name": "finite-algebra.finite-fields",
"value": 368,
"unit": "ms"
},
{
"name": "foundation.equivalence-classes",
"value": 367,
"unit": "ms"
},
{
"name": "group-theory.invertible-elements-monoids",
"value": 366,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.sequential-colimits",
"value": 366,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-maps-precategories",
"value": 365,
"unit": "ms"
},
{
"name": "foundation.universal-property-family-of-fibers-of-maps",
"value": 364,
"unit": "ms"
},
{
"name": "elementary-number-theory.pisano-periods",
"value": 363,
"unit": "ms"
},
{
"name": "foundation.identity-types",
"value": 361,
"unit": "ms"
},
{
"name": "finite-group-theory.finite-groups",
"value": 361,
"unit": "ms"
},
{
"name": "reflection.group-solver",
"value": 361,
"unit": "ms"
},
{
"name": "trees.ranks-of-elements-w-types",
"value": 361,
"unit": "ms"
},
{
"name": "ring-theory.homomorphisms-rings",
"value": 357,
"unit": "ms"
},
{
"name": "elementary-number-theory.divisibility-natural-numbers",
"value": 357,
"unit": "ms"
},
{
"name": "foundation.type-duality",
"value": 356,
"unit": "ms"
},
{
"name": "foundation.equivalences-span-diagrams",
"value": 352,
"unit": "ms"
},
{
"name": "foundation.symmetric-operations",
"value": 351,
"unit": "ms"
},
{
"name": "trees.functoriality-w-types",
"value": 350,
"unit": "ms"
},
{
"name": "foundation-core.fibers-of-maps",
"value": 350,
"unit": "ms"
},
{
"name": "ring-theory.modules-rings",
"value": 346,
"unit": "ms"
},
{
"name": "elementary-number-theory.universal-property-integers",
"value": 346,
"unit": "ms"
},
{
"name": "commutative-algebra.integral-domains",
"value": 345,
"unit": "ms"
},
{
"name": "elementary-number-theory.greatest-common-divisor-natural-numbers",
"value": 343,
"unit": "ms"
},
{
"name": "group-theory.symmetric-groups",
"value": 342,
"unit": "ms"
},
{
"name": "order-theory.nuclei-large-locales",
"value": 342,
"unit": "ms"
},
{
"name": "foundation.universal-property-propositional-truncation",
"value": 341,
"unit": "ms"
},
{
"name": "order-theory.meet-semilattices",
"value": 336,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.lifts-of-maps",
"value": 335,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-functors-from-small-to-large-categories",
"value": 335,
"unit": "ms"
},
{
"name": "order-theory.closure-operators-large-locales",
"value": 334,
"unit": "ms"
},
{
"name": "category-theory.categories",
"value": 332,
"unit": "ms"
},
{
"name": "foundation.equality-coproduct-types",
"value": 330,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.local-types",
"value": 330,
"unit": "ms"
},
{
"name": "type-theories.precategories-with-attributes",
"value": 328,
"unit": "ms"
},
{
"name": "elementary-number-theory.well-ordering-principle-standard-finite-types",
"value": 327,
"unit": "ms"
},
{
"name": "lists.permutation-vectors",
"value": 325,
"unit": "ms"
},
{
"name": "group-theory.abelianization-groups",
"value": 324,
"unit": "ms"
},
{
"name": "commutative-algebra.products-radical-ideals-commutative-rings",
"value": 323,
"unit": "ms"
},
{
"name": "univalent-combinatorics.set-quotients-of-index-two",
"value": 323,
"unit": "ms"
},
{
"name": "order-theory.join-semilattices",
"value": 322,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-universal-property-sequential-colimits",
"value": 321,
"unit": "ms"
},
{
"name": "foundation.exclusive-disjunction",
"value": 321,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.universal-property-sequential-colimits",
"value": 321,
"unit": "ms"
},
{
"name": "category-theory.dependent-products-of-large-categories",
"value": 320,
"unit": "ms"
},
{
"name": "category-theory.dependent-products-of-precategories",
"value": 318,
"unit": "ms"
},
{
"name": "foundation.functoriality-cartesian-product-types",
"value": 315,
"unit": "ms"
},
{
"name": "category-theory.pseudomonic-functors-precategories",
"value": 315,
"unit": "ms"
},
{
"name": "category-theory.dependent-products-of-large-precategories",
"value": 314,
"unit": "ms"
},
{
"name": "category-theory.adjunctions-large-categories",
"value": 313,
"unit": "ms"
},
{
"name": "lists.lists",
"value": 313,
"unit": "ms"
},
{
"name": "elementary-number-theory.reduced-integer-fractions",
"value": 311,
"unit": "ms"
},
{
"name": "category-theory.monads-on-precategories",
"value": 307,
"unit": "ms"
},
{
"name": "group-theory.decidable-subgroups",
"value": 306,
"unit": "ms"
},
{
"name": "foundation-core.homotopies",
"value": 305,
"unit": "ms"
},
{
"name": "foundation.transport-along-higher-identifications",
"value": 304,
"unit": "ms"
},
{
"name": "univalent-combinatorics.partitions",
"value": 303,
"unit": "ms"
},
{
"name": "commutative-algebra.gaussian-integers",
"value": 302,
"unit": "ms"
},
{
"name": "foundation.isolated-elements",
"value": 301,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.factorizations-of-maps",
"value": 300,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.cocones-under-sequential-diagrams",
"value": 299,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.precomposition-lifts-families-of-elements",
"value": 299,
"unit": "ms"
},
{
"name": "group-theory.quotients-abelian-groups",
"value": 298,
"unit": "ms"
},
{
"name": "ring-theory.localizations-rings",
"value": 298,
"unit": "ms"
},
{
"name": "category-theory.functors-categories",
"value": 298,
"unit": "ms"
},
{
"name": "foundation.faithful-maps",
"value": 297,
"unit": "ms"
},
{
"name": "trees.morphisms-coalgebras-polynomial-endofunctors",
"value": 296,
"unit": "ms"
},
{
"name": "foundation.uniqueness-set-quotients",
"value": 295,
"unit": "ms"
},
{
"name": "lists.sort-by-insertion-vectors",
"value": 293,
"unit": "ms"
},
{
"name": "trees.morphisms-algebras-polynomial-endofunctors",
"value": 292,
"unit": "ms"
},
{
"name": "elementary-number-theory.greatest-common-divisor-integers",
"value": 292,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-universal-property-coequalizers",
"value": 290,
"unit": "ms"
},
{
"name": "foundation-core.truncated-types",
"value": 290,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-groups",
"value": 287,
"unit": "ms"
},
{
"name": "trees.small-multisets",
"value": 286,
"unit": "ms"
},
{
"name": "group-theory.isomorphisms-group-actions",
"value": 286,
"unit": "ms"
},
{
"name": "group-theory.images-of-group-homomorphisms",
"value": 284,
"unit": "ms"
},
{
"name": "foundation-core.subtypes",
"value": 283,
"unit": "ms"
},
{
"name": "category-theory.precategory-of-functors-from-small-to-large-precategories",
"value": 281,
"unit": "ms"
},
{
"name": "univalent-combinatorics.type-duality",
"value": 279,
"unit": "ms"
},
{
"name": "category-theory.precategory-of-maps-from-small-to-large-precategories",
"value": 279,
"unit": "ms"
},
{
"name": "foundation.equality-dependent-pair-types",
"value": 278,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-pushout-products",
"value": 275,
"unit": "ms"
},
{
"name": "graph-theory.equivalences-undirected-graphs",
"value": 275,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-group-actions",
"value": 273,
"unit": "ms"
},
{
"name": "commutative-algebra.homomorphisms-commutative-rings",
"value": 273,
"unit": "ms"
},
{
"name": "category-theory.monads-on-categories",
"value": 273,
"unit": "ms"
},
{
"name": "commutative-algebra.isomorphisms-commutative-rings",
"value": 272,
"unit": "ms"
},
{
"name": "foundation.equivalences-arrows",
"value": 272,
"unit": "ms"
},
{
"name": "category-theory.copresheaf-categories",
"value": 272,
"unit": "ms"
},
{
"name": "trees.fibers-enriched-directed-trees",
"value": 270,
"unit": "ms"
},
{
"name": "elementary-number-theory.integers",
"value": 268,
"unit": "ms"
},
{
"name": "finite-algebra.homomorphisms-commutative-finite-rings",
"value": 266,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-descent-circle",
"value": 265,
"unit": "ms"
},
{
"name": "graph-theory.equivalences-enriched-undirected-graphs",
"value": 264,
"unit": "ms"
},
{
"name": "foundation.postcomposition-functions",
"value": 263,
"unit": "ms"
},
{
"name": "category-theory.isomorphisms-in-subprecategories",
"value": 263,
"unit": "ms"
},
{
"name": "group-theory.subgroups-generated-by-families-of-elements-groups",
"value": 263,
"unit": "ms"
},
{
"name": "univalent-combinatorics.decidable-equivalence-relations",
"value": 262,
"unit": "ms"
},
{
"name": "group-theory.subgroups-generated-by-elements-groups",
"value": 262,
"unit": "ms"
},
{
"name": "univalent-combinatorics.pigeonhole-principle",
"value": 262,
"unit": "ms"
},
{
"name": "category-theory.presheaf-categories",
"value": 262,
"unit": "ms"
},
{
"name": "foundation.type-arithmetic-coproduct-types",
"value": 262,
"unit": "ms"
},
{
"name": "structured-types.equivalences-types-equipped-with-endomorphisms",
"value": 261,
"unit": "ms"
},
{
"name": "lists.universal-property-lists-wild-monoids",
"value": 261,
"unit": "ms"
},
{
"name": "species.cauchy-exponentials-species-of-types",
"value": 260,
"unit": "ms"
},
{
"name": "foundation.perfect-images",
"value": 259,
"unit": "ms"
},
{
"name": "group-theory.isomorphisms-semigroups",
"value": 258,
"unit": "ms"
},
{
"name": "trees.morphisms-directed-trees",
"value": 258,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.descent-circle-equivalence-types",
"value": 257,
"unit": "ms"
},
{
"name": "species.products-dirichlet-series-species-of-types-in-subuniverses",
"value": 256,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-functors-categories",
"value": 256,
"unit": "ms"
},
{
"name": "foundation.dependent-binomial-theorem",
"value": 256,
"unit": "ms"
},
{
"name": "order-theory.order-preserving-maps-posets",
"value": 255,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.equivalences-sequential-diagrams",
"value": 253,
"unit": "ms"
},
{
"name": "foundation.sections",
"value": 252,
"unit": "ms"
},
{
"name": "commutative-algebra.intersections-radical-ideals-commutative-rings",
"value": 250,
"unit": "ms"
},
{
"name": "ring-theory.homomorphisms-semirings",
"value": 249,
"unit": "ms"
},
{
"name": "type-theories.unityped-type-theories",
"value": 249,
"unit": "ms"
},
{
"name": "structured-types.initial-pointed-type-equipped-with-automorphism",
"value": 249,
"unit": "ms"
},
{
"name": "foundation.commuting-squares-of-homotopies",
"value": 248,
"unit": "ms"
},
{
"name": "category-theory.full-subcategories",
"value": 247,
"unit": "ms"
},
{
"name": "foundation-core.small-types",
"value": 247,
"unit": "ms"
},
{
"name": "foundation.commuting-triangles-of-identifications",
"value": 246,
"unit": "ms"
},
{
"name": "category-theory.groupoids",
"value": 246,
"unit": "ms"
},
{
"name": "lists.permutation-lists",
"value": 246,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.codiagonals-of-maps",
"value": 245,
"unit": "ms"
},
{
"name": "elementary-number-theory.based-strong-induction-natural-numbers",
"value": 245,
"unit": "ms"
},
{
"name": "elementary-number-theory.inequality-natural-numbers",
"value": 243,
"unit": "ms"
},
{
"name": "elementary-number-theory.distance-natural-numbers",
"value": 243,
"unit": "ms"
},
{
"name": "foundation.decidable-equality",
"value": 241,
"unit": "ms"
},
{
"name": "commutative-algebra.joins-ideals-commutative-rings",
"value": 241,
"unit": "ms"
},
{
"name": "ring-theory.products-subsets-rings",
"value": 240,
"unit": "ms"
},
{
"name": "category-theory.large-function-categories",
"value": 240,
"unit": "ms"
},
{
"name": "trees.rooted-morphisms-directed-trees",
"value": 239,
"unit": "ms"
},
{
"name": "univalent-combinatorics.coproduct-types",
"value": 239,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-maps-categories",
"value": 239,
"unit": "ms"
},
{
"name": "category-theory.full-subprecategories",
"value": 238,
"unit": "ms"
},
{
"name": "species.dirichlet-exponentials-species-of-types",
"value": 238,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.factorizations-of-maps-function-classes",
"value": 238,
"unit": "ms"
},
{
"name": "foundation.universal-property-fiber-products",
"value": 235,
"unit": "ms"
},
{
"name": "foundation.propositional-truncations",
"value": 235,
"unit": "ms"
},
{
"name": "finite-algebra.homomorphisms-finite-rings",
"value": 235,
"unit": "ms"
},
{
"name": "foundation.dependent-identifications",
"value": 234,
"unit": "ms"
},
{
"name": "univalent-combinatorics.ferrers-diagrams",
"value": 233,
"unit": "ms"
},
{
"name": "ring-theory.transporting-ring-structure-along-isomorphisms-abelian-groups",
"value": 233,
"unit": "ms"
},
{
"name": "foundation.images-subtypes",
"value": 231,
"unit": "ms"
},
{
"name": "category-theory.large-function-precategories",
"value": 231,
"unit": "ms"
},
{
"name": "category-theory.functors-from-small-to-large-precategories",
"value": 230,
"unit": "ms"
},
{
"name": "category-theory.function-precategories",
"value": 230,
"unit": "ms"
},
{
"name": "foundation.type-arithmetic-empty-type",
"value": 229,
"unit": "ms"
},
{
"name": "foundation-core.universal-property-pullbacks",
"value": 228,
"unit": "ms"
},
{
"name": "category-theory.maps-precategories",
"value": 228,
"unit": "ms"
},
{
"name": "category-theory.composition-operations-on-binary-families-of-sets",
"value": 228,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.universal-property-circle",
"value": 227,
"unit": "ms"
},
{
"name": "order-theory.order-preserving-maps-preorders",
"value": 226,
"unit": "ms"
},
{
"name": "category-theory.functors-from-small-to-large-categories",
"value": 226,
"unit": "ms"
},
{
"name": "foundation.transposition-identifications-along-equivalences",
"value": 226,
"unit": "ms"
},
{
"name": "foundation.binary-relations",
"value": 225,
"unit": "ms"
},
{
"name": "type-theories.precategories-with-families",
"value": 224,
"unit": "ms"
},
{
"name": "lists.functoriality-lists",
"value": 224,
"unit": "ms"
},
{
"name": "foundation-core.truncated-maps",
"value": 223,
"unit": "ms"
},
{
"name": "foundation.binary-type-duality",
"value": 223,
"unit": "ms"
},
{
"name": "foundation.iterating-automorphisms",
"value": 222,
"unit": "ms"
},
{
"name": "group-theory.normal-cores-subgroups",
"value": 221,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.descent-circle-function-types",
"value": 221,
"unit": "ms"
},
{
"name": "foundation.univalence",
"value": 221,
"unit": "ms"
},
{
"name": "order-theory.large-subframes",
"value": 220,
"unit": "ms"
},
{
"name": "category-theory.terminal-category",
"value": 220,
"unit": "ms"
},
{
"name": "foundation.decidable-propositions",
"value": 220,
"unit": "ms"
},
{
"name": "foundation.whiskering-homotopies-composition",
"value": 218,
"unit": "ms"
},
{
"name": "univalent-combinatorics.counting-decidable-subtypes",
"value": 218,
"unit": "ms"
},
{
"name": "category-theory.functors-nonunital-precategories",
"value": 217,
"unit": "ms"
},
{
"name": "group-theory.powers-of-elements-monoids",
"value": 216,
"unit": "ms"
},
{
"name": "foundation.repetitions-of-values",
"value": 215,
"unit": "ms"
},
{
"name": "foundation.whiskering-identifications-concatenation",
"value": 214,
"unit": "ms"
},
{
"name": "group-theory.normal-closures-subgroups",
"value": 214,
"unit": "ms"
},
{
"name": "category-theory.fully-faithful-maps-precategories",
"value": 214,
"unit": "ms"
},
{
"name": "group-theory.subsemigroups",
"value": 214,
"unit": "ms"
},
{
"name": "commutative-algebra.zariski-locale",
"value": 213,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-monoids",
"value": 212,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.infinite-cyclic-types",
"value": 211,
"unit": "ms"
},
{
"name": "univalent-combinatorics.cartesian-product-types",
"value": 211,
"unit": "ms"
},
{
"name": "category-theory.precategory-of-elements-of-a-presheaf",
"value": 211,
"unit": "ms"
},
{
"name": "group-theory.functoriality-quotient-groups",
"value": 210,
"unit": "ms"
},
{
"name": "foundation.universal-property-set-truncation",
"value": 210,
"unit": "ms"
},
{
"name": "ring-theory.semirings",
"value": 210,
"unit": "ms"
},
{
"name": "foundation.morphisms-arrows",
"value": 206,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.functoriality-higher-modalities",
"value": 206,
"unit": "ms"
},
{
"name": "foundation.transport-along-equivalences",
"value": 205,
"unit": "ms"
},
{
"name": "foundation.universal-property-sequential-limits",
"value": 205,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.descent-circle",
"value": 205,
"unit": "ms"
},
{
"name": "category-theory.faithful-maps-precategories",
"value": 204,
"unit": "ms"
},
{
"name": "foundation.logical-equivalences",
"value": 203,
"unit": "ms"
},
{
"name": "category-theory.anafunctors-precategories",
"value": 203,
"unit": "ms"
},
{
"name": "trees.undirected-trees",
"value": 203,
"unit": "ms"
},
{
"name": "foundation.morphisms-cospan-diagrams",
"value": 201,
"unit": "ms"
},
{
"name": "structured-types.involutive-type-of-h-space-structures",
"value": 200,
"unit": "ms"
},
{
"name": "type-theories.sections-dependent-type-theories",
"value": 200,
"unit": "ms"
},
{
"name": "group-theory.transitive-concrete-group-actions",
"value": 200,
"unit": "ms"
},
{
"name": "foundation.subtypes",
"value": 200,
"unit": "ms"
},
{
"name": "elementary-number-theory.ring-of-integers",
"value": 199,
"unit": "ms"
},
{
"name": "group-theory.substitution-functor-group-actions",
"value": 199,
"unit": "ms"
},
{
"name": "foundation.symmetric-identity-types",
"value": 199,
"unit": "ms"
},
{
"name": "ring-theory.congruence-relations-rings",
"value": 199,
"unit": "ms"
},
{
"name": "commutative-algebra.homomorphisms-commutative-semirings",
"value": 199,
"unit": "ms"
},
{
"name": "foundation.function-extensionality",
"value": 199,
"unit": "ms"
},
{
"name": "group-theory.isomorphisms-groups",
"value": 198,
"unit": "ms"
},
{
"name": "linear-algebra.vectors-on-euclidean-domains",
"value": 198,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.pushout-products",
"value": 198,
"unit": "ms"
},
{
"name": "foundation.preunivalent-type-families",
"value": 198,
"unit": "ms"
},
{
"name": "univalent-combinatorics.dependent-pair-types",
"value": 197,
"unit": "ms"
},
{
"name": "category-theory.pullbacks-in-precategories",
"value": 197,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.extensions-double-lifts-families-of-elements",
"value": 197,
"unit": "ms"
},
{
"name": "finite-group-theory.cartier-delooping-sign-homomorphism",
"value": 197,
"unit": "ms"
},
{
"name": "foundation-core.propositions",
"value": 197,
"unit": "ms"
},
{
"name": "trees.bases-enriched-directed-trees",
"value": 197,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.descent-circle-subtypes",
"value": 197,
"unit": "ms"
},
{
"name": "group-theory.isomorphisms-abelian-groups",
"value": 196,
"unit": "ms"
},
{
"name": "lists.arrays",
"value": 196,
"unit": "ms"
},
{
"name": "group-theory.congruence-relations-groups",
"value": 195,
"unit": "ms"
},
{
"name": "group-theory.subgroups-concrete-groups",
"value": 195,
"unit": "ms"
},
{
"name": "category-theory.gaunt-categories",
"value": 194,
"unit": "ms"
},
{
"name": "group-theory",
"value": 193,
"unit": "ms"
},
{
"name": "ring-theory.invertible-elements-rings",
"value": 193,
"unit": "ms"
},
{
"name": "species.small-cauchy-composition-species-of-finite-inhabited-types",
"value": 193,
"unit": "ms"
},
{
"name": "category-theory.restrictions-functors-cores-precategories",
"value": 192,
"unit": "ms"
},
{
"name": "lists.sorted-vectors",
"value": 192,
"unit": "ms"
},
{
"name": "linear-algebra.vectors-on-rings",
"value": 192,
"unit": "ms"
},
{
"name": "trees.enriched-directed-trees",
"value": 189,
"unit": "ms"
},
{
"name": "foundation.function-types",
"value": 189,
"unit": "ms"
},
{
"name": "foundation.universal-property-identity-types",
"value": 189,
"unit": "ms"
},
{
"name": "category-theory.opposite-preunivalent-categories",
"value": 188,
"unit": "ms"
},
{
"name": "category-theory.maps-set-magmoids",
"value": 187,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.interval-type",
"value": 186,
"unit": "ms"
},
{
"name": "commutative-algebra.radicals-of-ideals-commutative-rings",
"value": 186,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.pushouts-of-pointed-types",
"value": 186,
"unit": "ms"
},
{
"name": "set-theory.cardinalities",
"value": 185,
"unit": "ms"
},
{
"name": "foundation-core.contractible-types",
"value": 185,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.factorization-operations-function-classes",
"value": 184,
"unit": "ms"
},
{
"name": "ring-theory.joins-right-ideals-rings",
"value": 183,
"unit": "ms"
},
{
"name": "ring-theory.sums-semirings",
"value": 182,
"unit": "ms"
},
{
"name": "order-theory.greatest-lower-bounds-posets",
"value": 182,
"unit": "ms"
},
{
"name": "finite-group-theory.finite-semigroups",
"value": 182,
"unit": "ms"
},
{
"name": "foundation.regensburg-extension-fundamental-theorem-of-identity-types",
"value": 182,
"unit": "ms"
},
{
"name": "order-theory.least-upper-bounds-posets",
"value": 182,
"unit": "ms"
},
{
"name": "order-theory.finite-preorders",
"value": 180,
"unit": "ms"
},
{
"name": "species.composition-cauchy-series-species-of-types",
"value": 180,
"unit": "ms"
},
{
"name": "category-theory.indiscrete-precategories",
"value": 180,
"unit": "ms"
},
{
"name": "foundation.multivariable-homotopies",
"value": 179,
"unit": "ms"
},
{
"name": "foundation.universal-property-truncation",
"value": 178,
"unit": "ms"
},
{
"name": "foundation.symmetric-difference",
"value": 177,
"unit": "ms"
},
{
"name": "foundation.impredicative-encodings",
"value": 177,
"unit": "ms"
},
{
"name": "foundation.unordered-tuples",
"value": 177,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.morphisms-sequential-diagrams",
"value": 177,
"unit": "ms"
},
{
"name": "foundation.equality-cartesian-product-types",
"value": 177,
"unit": "ms"
},
{
"name": "finite-algebra.dependent-products-finite-rings",
"value": 176,
"unit": "ms"
},
{
"name": "category-theory.cores-precategories",
"value": 175,
"unit": "ms"
},
{
"name": "category-theory.large-categories",
"value": 175,
"unit": "ms"
},
{
"name": "ring-theory.joins-ideals-rings",
"value": 175,
"unit": "ms"
},
{
"name": "elementary-number-theory.standard-cyclic-rings",
"value": 175,
"unit": "ms"
},
{
"name": "graph-theory.morphisms-undirected-graphs",
"value": 174,
"unit": "ms"
},
{
"name": "foundation.sequential-limits",
"value": 174,
"unit": "ms"
},
{
"name": "graph-theory.fibers-directed-graphs",
"value": 174,
"unit": "ms"
},
{
"name": "elementary-number-theory.strict-inequality-natural-numbers",
"value": 174,
"unit": "ms"
},
{
"name": "group-theory.images-of-semigroup-homomorphisms",
"value": 174,
"unit": "ms"
},
{
"name": "ring-theory.joins-left-ideals-rings",
"value": 173,
"unit": "ms"
},
{
"name": "ring-theory.homomorphisms-cyclic-rings",
"value": 173,
"unit": "ms"
},
{
"name": "foundation.epimorphisms",
"value": 173,
"unit": "ms"
},
{
"name": "group-theory.iterated-cartesian-products-concrete-groups",
"value": 172,
"unit": "ms"
},
{
"name": "group-theory.addition-homomorphisms-abelian-groups",
"value": 172,
"unit": "ms"
},
{
"name": "graph-theory.morphisms-directed-graphs",
"value": 172,
"unit": "ms"
},
{
"name": "elementary-number-theory.type-arithmetic-natural-numbers",
"value": 172,
"unit": "ms"
},
{
"name": "foundation.locally-small-types",
"value": 171,
"unit": "ms"
},
{
"name": "foundation.decidable-subtypes",
"value": 171,
"unit": "ms"
},
{
"name": "foundation.precomposition-functions",
"value": 170,
"unit": "ms"
},
{
"name": "category-theory.faithful-functors-precategories",
"value": 170,
"unit": "ms"
},
{
"name": "finite-algebra.dependent-products-commutative-finite-rings",
"value": 170,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.joins-of-maps",
"value": 170,
"unit": "ms"
},
{
"name": "foundation.functoriality-truncation",
"value": 170,
"unit": "ms"
},
{
"name": "foundation-core.universal-property-truncation",
"value": 170,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-semigroups",
"value": 169,
"unit": "ms"
},
{
"name": "group-theory.isomorphisms-monoids",
"value": 169,
"unit": "ms"
},
{
"name": "foundation.equality-fibers-of-maps",
"value": 169,
"unit": "ms"
},
{
"name": "elementary-number-theory.powers-of-two",
"value": 168,
"unit": "ms"
},
{
"name": "category-theory.full-large-subprecategories",
"value": 168,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.functoriality-loop-spaces",
"value": 167,
"unit": "ms"
},
{
"name": "foundation.cantor-schroder-bernstein-escardo",
"value": 167,
"unit": "ms"
},
{
"name": "foundation.images",
"value": 167,
"unit": "ms"
},
{
"name": "group-theory.integer-multiples-of-elements-abelian-groups",
"value": 167,
"unit": "ms"
},
{
"name": "commutative-algebra.transporting-commutative-ring-structure-isomorphisms-abelian-groups",
"value": 166,
"unit": "ms"
},
{
"name": "category-theory.preunivalent-categories",
"value": 166,
"unit": "ms"
},
{
"name": "group-theory.orbits-monoid-actions",
"value": 166,
"unit": "ms"
},
{
"name": "foundation.0-connected-types",
"value": 165,
"unit": "ms"
},
{
"name": "finite-group-theory.finite-monoids",
"value": 165,
"unit": "ms"
},
{
"name": "commutative-algebra.integer-multiples-of-elements-commutative-rings",
"value": 165,
"unit": "ms"
},
{
"name": "group-theory.normalizer-subgroups",
"value": 165,
"unit": "ms"
},
{
"name": "univalent-combinatorics.fibers-of-maps",
"value": 164,
"unit": "ms"
},
{
"name": "foundation.equivalences-spans",
"value": 164,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.descent-circle-dependent-pair-types",
"value": 164,
"unit": "ms"
},
{
"name": "foundation.sets",
"value": 163,
"unit": "ms"
},
{
"name": "commutative-algebra.ideals-commutative-rings",
"value": 162,
"unit": "ms"
},
{
"name": "ring-theory.dependent-products-rings",
"value": 162,
"unit": "ms"
},
{
"name": "univalent-combinatorics.2-element-subtypes",
"value": 162,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.triple-loop-spaces",
"value": 161,
"unit": "ms"
},
{
"name": "trees.functoriality-fiber-directed-tree",
"value": 161,
"unit": "ms"
},
{
"name": "foundation.constant-maps",
"value": 161,
"unit": "ms"
},
{
"name": "univalent-combinatorics.counting",
"value": 161,
"unit": "ms"
},
{
"name": "finite-group-theory.finite-abelian-groups",
"value": 159,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-groups-equipped-with-normal-subgroups",
"value": 158,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.factorizations-of-maps-global-function-classes",
"value": 158,
"unit": "ms"
},
{
"name": "foundation.descent-dependent-pair-types",
"value": 158,
"unit": "ms"
},
{
"name": "foundation.subuniverses",
"value": 158,
"unit": "ms"
},
{
"name": "structured-types.dependent-products-wild-monoids",
"value": 157,
"unit": "ms"
},
{
"name": "elementary-number-theory.addition-integer-fractions",
"value": 157,
"unit": "ms"
},
{
"name": "finite-group-theory.finite-type-groups",
"value": 157,
"unit": "ms"
},
{
"name": "ring-theory.congruence-relations-semirings",
"value": 157,
"unit": "ms"
},
{
"name": "foundation.singleton-subtypes",
"value": 157,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.orthogonal-factorization-systems",
"value": 156,
"unit": "ms"
},
{
"name": "foundation-core.functoriality-dependent-function-types",
"value": 156,
"unit": "ms"
},
{
"name": "group-theory.cartesian-products-concrete-groups",
"value": 156,
"unit": "ms"
},
{
"name": "category-theory.full-large-subcategories",
"value": 156,
"unit": "ms"
},
{
"name": "structured-types.pointed-types-equipped-with-automorphisms",
"value": 156,
"unit": "ms"
},
{
"name": "foundation.fiber-inclusions",
"value": 155,
"unit": "ms"
},
{
"name": "elementary-number-theory.strong-induction-natural-numbers",
"value": 155,
"unit": "ms"
},
{
"name": "category-theory.strict-categories",
"value": 155,
"unit": "ms"
},
{
"name": "order-theory.large-frames",
"value": 155,
"unit": "ms"
},
{
"name": "commutative-algebra.function-commutative-rings",
"value": 155,
"unit": "ms"
},
{
"name": "foundation.descent-equivalences",
"value": 155,
"unit": "ms"
},
{
"name": "foundation.decidable-types",
"value": 154,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-abelian-groups",
"value": 154,
"unit": "ms"
},
{
"name": "group-theory.congruence-relations-abelian-groups",
"value": 153,
"unit": "ms"
},
{
"name": "univalent-combinatorics.sequences-finite-types",
"value": 153,
"unit": "ms"
},
{
"name": "structured-types.equivalences-types-equipped-with-automorphisms",
"value": 152,
"unit": "ms"
},
{
"name": "ring-theory.products-rings",
"value": 152,
"unit": "ms"
},
{
"name": "elementary-number-theory.multiplication-natural-numbers",
"value": 151,
"unit": "ms"
},
{
"name": "foundation.connected-types",
"value": 151,
"unit": "ms"
},
{
"name": "elementary-number-theory.finitary-natural-numbers",
"value": 151,
"unit": "ms"
},
{
"name": "species.products-dirichlet-series-species-of-types",
"value": 151,
"unit": "ms"
},
{
"name": "category-theory.products-in-precategories",
"value": 150,
"unit": "ms"
},
{
"name": "category-theory.coproducts-in-precategories",
"value": 150,
"unit": "ms"
},
{
"name": "foundation.diagonals-of-maps",
"value": 150,
"unit": "ms"
},
{
"name": "foundation.action-on-higher-identifications-functions",
"value": 149,
"unit": "ms"
},
{
"name": "foundation-core.equality-dependent-pair-types",
"value": 148,
"unit": "ms"
},
{
"name": "foundation.morphisms-spans-families-of-types",
"value": 148,
"unit": "ms"
},
{
"name": "order-theory.frames",
"value": 147,
"unit": "ms"
},
{
"name": "univalent-combinatorics.equality-standard-finite-types",
"value": 147,
"unit": "ms"
},
{
"name": "foundation.iterated-cartesian-product-types",
"value": 147,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.free-loops",
"value": 146,
"unit": "ms"
},
{
"name": "univalent-combinatorics.decidable-subtypes",
"value": 146,
"unit": "ms"
},
{
"name": "foundation-core.coherently-invertible-maps",
"value": 145,
"unit": "ms"
},
{
"name": "foundation.retractions",
"value": 145,
"unit": "ms"
},
{
"name": "category-theory",
"value": 145,
"unit": "ms"
},
{
"name": "foundation.universal-property-propositional-truncation-into-sets",
"value": 145,
"unit": "ms"
},
{
"name": "elementary-number-theory.universal-property-natural-numbers",
"value": 143,
"unit": "ms"
},
{
"name": "group-theory.saturated-congruence-relations-monoids",
"value": 143,
"unit": "ms"
},
{
"name": "group-theory.nullifying-group-homomorphisms",
"value": 143,
"unit": "ms"
},
{
"name": "foundation-core.injective-maps",
"value": 143,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.universal-property-suspensions-of-pointed-types",
"value": 142,
"unit": "ms"
},
{
"name": "foundation.coherently-invertible-maps",
"value": 142,
"unit": "ms"
},
{
"name": "category-theory.large-precategories",
"value": 142,
"unit": "ms"
},
{
"name": "elementary-number-theory.congruence-natural-numbers",
"value": 141,
"unit": "ms"
},
{
"name": "commutative-algebra.dependent-products-commutative-rings",
"value": 141,
"unit": "ms"
},
{
"name": "trees.fibers-directed-trees",
"value": 141,
"unit": "ms"
},
{
"name": "finite-algebra.products-commutative-finite-rings",
"value": 140,
"unit": "ms"
},
{
"name": "species.products-cauchy-series-species-of-types",
"value": 140,
"unit": "ms"
},
{
"name": "foundation.functional-correspondences",
"value": 139,
"unit": "ms"
},
{
"name": "foundation.commuting-triangles-of-maps",
"value": 139,
"unit": "ms"
},
{
"name": "foundation.equivalence-extensionality",
"value": 139,
"unit": "ms"
},
{
"name": "foundation.action-on-equivalences-type-families",
"value": 139,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.open-modalities",
"value": 139,
"unit": "ms"
},
{
"name": "universal-algebra.terms-over-signatures",
"value": 139,
"unit": "ms"
},
{
"name": "category-theory.opposite-large-precategories",
"value": 138,
"unit": "ms"
},
{
"name": "group-theory.saturated-congruence-relations-commutative-monoids",
"value": 138,
"unit": "ms"
},
{
"name": "foundation.global-subuniverses",
"value": 138,
"unit": "ms"
},
{
"name": "elementary-number-theory.congruence-integers",
"value": 138,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-functors-large-precategories",
"value": 138,
"unit": "ms"
},
{
"name": "univalent-combinatorics.cycle-prime-decomposition-natural-numbers",
"value": 137,
"unit": "ms"
},
{
"name": "order-theory.large-locales",
"value": 137,
"unit": "ms"
},
{
"name": "category-theory.opposite-categories",
"value": 137,
"unit": "ms"
},
{
"name": "foundation.univalent-type-families",
"value": 137,
"unit": "ms"
},
{
"name": "trees.induction-w-types",
"value": 136,
"unit": "ms"
},
{
"name": "group-theory.pullbacks-subgroups",
"value": 136,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.uniquely-eliminating-modalities",
"value": 136,
"unit": "ms"
},
{
"name": "univalent-combinatorics.equivalences-cubes",
"value": 136,
"unit": "ms"
},
{
"name": "group-theory.submonoids",
"value": 135,
"unit": "ms"
},
{
"name": "foundation.coproduct-types",
"value": 135,
"unit": "ms"
},
{
"name": "foundation.type-theoretic-principle-of-choice",
"value": 135,
"unit": "ms"
},
{
"name": "group-theory.dihedral-group-construction",
"value": 135,
"unit": "ms"
},
{
"name": "universal-algebra.algebraic-theory-of-groups",
"value": 134,
"unit": "ms"
},
{
"name": "category-theory.opposite-precategories",
"value": 134,
"unit": "ms"
},
{
"name": "order-theory.large-quotient-locales",
"value": 134,
"unit": "ms"
},
{
"name": "finite-algebra.products-finite-rings",
"value": 133,
"unit": "ms"
},
{
"name": "foundation.morphisms-inverse-sequential-diagrams",
"value": 132,
"unit": "ms"
},
{
"name": "foundation.truncation-images-of-maps",
"value": 132,
"unit": "ms"
},
{
"name": "univalent-combinatorics.embeddings-standard-finite-types",
"value": 132,
"unit": "ms"
},
{
"name": "species.morphisms-finite-species",
"value": 131,
"unit": "ms"
},
{
"name": "higher-group-theory.transitive-higher-group-actions",
"value": 131,
"unit": "ms"
},
{
"name": "foundation.involutions",
"value": 130,
"unit": "ms"
},
{
"name": "category-theory.precategories",
"value": 129,
"unit": "ms"
},
{
"name": "foundation.monomorphisms",
"value": 129,
"unit": "ms"
},
{
"name": "order-theory.order-preserving-maps-large-posets",
"value": 129,
"unit": "ms"
},
{
"name": "category-theory.yoneda-lemma-precategories",
"value": 129,
"unit": "ms"
},
{
"name": "group-theory.submonoids-commutative-monoids",
"value": 129,
"unit": "ms"
},
{
"name": "trees.rooted-morphisms-enriched-directed-trees",
"value": 129,
"unit": "ms"
},
{
"name": "elementary-number-theory.absolute-value-integers",
"value": 128,
"unit": "ms"
},
{
"name": "ring-theory.products-left-ideals-rings",
"value": 128,
"unit": "ms"
},
{
"name": "foundation.raising-universe-levels",
"value": 128,
"unit": "ms"
},
{
"name": "univalent-combinatorics.finite-choice",
"value": 127,
"unit": "ms"
},
{
"name": "ring-theory.ideals-semirings",
"value": 127,
"unit": "ms"
},
{
"name": "elementary-number-theory.prime-numbers",
"value": 127,
"unit": "ms"
},
{
"name": "structured-types.h-spaces",
"value": 127,
"unit": "ms"
},
{
"name": "foundation.universal-property-dependent-pair-types",
"value": 127,
"unit": "ms"
},
{
"name": "lists.quicksort-lists",
"value": 126,
"unit": "ms"
},
{
"name": "category-theory.functors-large-precategories",
"value": 126,
"unit": "ms"
},
{
"name": "order-theory.order-preserving-maps-large-preorders",
"value": 126,
"unit": "ms"
},
{
"name": "foundation.families-of-maps",
"value": 126,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-concrete-groups",
"value": 126,
"unit": "ms"
},
{
"name": "foundation-core.sections",
"value": 126,
"unit": "ms"
},
{
"name": "group-theory.equivalences-concrete-group-actions",
"value": 126,
"unit": "ms"
},
{
"name": "foundation.category-of-families-of-sets",
"value": 125,
"unit": "ms"
},
{
"name": "ring-theory.products-right-ideals-rings",
"value": 125,
"unit": "ms"
},
{
"name": "ring-theory.products-ideals-rings",
"value": 125,
"unit": "ms"
},
{
"name": "foundation.apartness-relations",
"value": 124,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.global-function-classes",
"value": 124,
"unit": "ms"
},
{
"name": "linear-algebra.vectors-on-semirings",
"value": 124,
"unit": "ms"
},
{
"name": "order-theory.large-suplattices",
"value": 123,
"unit": "ms"
},
{
"name": "foundation.fibered-involutions",
"value": 123,
"unit": "ms"
},
{
"name": "category-theory.conservative-functors-precategories",
"value": 123,
"unit": "ms"
},
{
"name": "order-theory.posets",
"value": 122,
"unit": "ms"
},
{
"name": "modal-type-theory.flat-sharp-adjunction",
"value": 122,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.extensions-lifts-families-of-elements",
"value": 122,
"unit": "ms"
},
{
"name": "group-theory.full-subgroups",
"value": 122,
"unit": "ms"
},
{
"name": "reflection.type-checking-monad",
"value": 122,
"unit": "ms"
},
{
"name": "structured-types.dependent-types-equipped-with-automorphisms",
"value": 122,
"unit": "ms"
},
{
"name": "foundation.pairs-of-distinct-elements",
"value": 121,
"unit": "ms"
},
{
"name": "category-theory.pregroupoids",
"value": 121,
"unit": "ms"
},
{
"name": "foundation.structure-identity-principle",
"value": 121,
"unit": "ms"
},
{
"name": "foundation.russells-paradox",
"value": 120,
"unit": "ms"
},
{
"name": "order-theory.large-meet-subsemilattices",
"value": 120,
"unit": "ms"
},
{
"name": "ring-theory.additive-orders-of-elements-rings",
"value": 120,
"unit": "ms"
},
{
"name": "elementary-number-theory.inequality-standard-finite-types",
"value": 119,
"unit": "ms"
},
{
"name": "foundation-core.retractions",
"value": 119,
"unit": "ms"
},
{
"name": "foundation.binary-reflecting-maps-equivalence-relations",
"value": 119,
"unit": "ms"
},
{
"name": "commutative-algebra.ideals-generated-by-subsets-commutative-rings",
"value": 119,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-commutative-monoids",
"value": 118,
"unit": "ms"
},
{
"name": "commutative-algebra.radical-ideals-commutative-rings",
"value": 118,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.reflective-subuniverses",
"value": 118,
"unit": "ms"
},
{
"name": "foundation.equivalence-induction",
"value": 118,
"unit": "ms"
},
{
"name": "category-theory.nonunital-precategories",
"value": 118,
"unit": "ms"
},
{
"name": "structured-types.morphisms-types-equipped-with-endomorphisms",
"value": 118,
"unit": "ms"
},
{
"name": "univalent-combinatorics.inhabited-finite-types",
"value": 118,
"unit": "ms"
},
{
"name": "commutative-algebra.invertible-elements-commutative-rings",
"value": 117,
"unit": "ms"
},
{
"name": "order-theory.large-posets",
"value": 117,
"unit": "ms"
},
{
"name": "species.coproducts-species-of-types-in-subuniverses",
"value": 117,
"unit": "ms"
},
{
"name": "commutative-algebra.commutative-semirings",
"value": 117,
"unit": "ms"
},
{
"name": "commutative-algebra.products-commutative-rings",
"value": 117,
"unit": "ms"
},
{
"name": "foundation-core.equivalence-relations",
"value": 117,
"unit": "ms"
},
{
"name": "group-theory.congruence-relations-semigroups",
"value": 116,
"unit": "ms"
},
{
"name": "foundation.propositional-extensionality",
"value": 115,
"unit": "ms"
},
{
"name": "trees.polynomial-endofunctors",
"value": 115,
"unit": "ms"
},
{
"name": "group-theory.nontrivial-groups",
"value": 115,
"unit": "ms"
},
{
"name": "ring-theory.powers-of-elements-rings",
"value": 115,
"unit": "ms"
},
{
"name": "foundation.1-types",
"value": 114,
"unit": "ms"
},
{
"name": "foundation.cones-over-inverse-sequential-diagrams",
"value": 114,
"unit": "ms"
},
{
"name": "foundation.trivial-sigma-decompositions",
"value": 114,
"unit": "ms"
},
{
"name": "group-theory.automorphism-groups",
"value": 113,
"unit": "ms"
},
{
"name": "foundation.discrete-sigma-decompositions",
"value": 113,
"unit": "ms"
},
{
"name": "order-theory.dependent-products-large-frames",
"value": 112,
"unit": "ms"
},
{
"name": "foundation.epimorphisms-with-respect-to-sets",
"value": 112,
"unit": "ms"
},
{
"name": "type-theories.pi-types-precategories-with-attributes",
"value": 112,
"unit": "ms"
},
{
"name": "foundation.contractible-types",
"value": 112,
"unit": "ms"
},
{
"name": "foundation.action-on-identifications-binary-functions",
"value": 112,
"unit": "ms"
},
{
"name": "group-theory.congruence-relations-commutative-monoids",
"value": 111,
"unit": "ms"
},
{
"name": "univalent-combinatorics.surjective-maps",
"value": 110,
"unit": "ms"
},
{
"name": "elementary-number-theory.decidable-types",
"value": 110,
"unit": "ms"
},
{
"name": "type-theories.pi-types-precategories-with-families",
"value": 110,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.retracts-of-sequential-diagrams",
"value": 109,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.powers-of-loops",
"value": 109,
"unit": "ms"
},
{
"name": "univalent-combinatorics.symmetric-difference",
"value": 109,
"unit": "ms"
},
{
"name": "group-theory.quotient-groups-concrete-groups",
"value": 109,
"unit": "ms"
},
{
"name": "group-theory.congruence-relations-monoids",
"value": 109,
"unit": "ms"
},
{
"name": "foundation.transport-split-type-families",
"value": 109,
"unit": "ms"
},
{
"name": "lists.concatenation-lists",
"value": 109,
"unit": "ms"
},
{
"name": "foundation.inhabited-types",
"value": 109,
"unit": "ms"
},
{
"name": "ring-theory.poset-of-right-ideals-rings",
"value": 109,
"unit": "ms"
},
{
"name": "ring-theory.right-ideals-rings",
"value": 109,
"unit": "ms"
},
{
"name": "foundation.choice-of-representatives-equivalence-relation",
"value": 108,
"unit": "ms"
},
{
"name": "group-theory.concrete-groups",
"value": 108,
"unit": "ms"
},
{
"name": "foundation.connected-components-universes",
"value": 108,
"unit": "ms"
},
{
"name": "foundation.iterating-functions",
"value": 108,
"unit": "ms"
},
{
"name": "group-theory.kernels-homomorphisms-groups",
"value": 107,
"unit": "ms"
},
{
"name": "foundation-core.type-theoretic-principle-of-choice",
"value": 107,
"unit": "ms"
},
{
"name": "ring-theory.left-ideals-rings",
"value": 107,
"unit": "ms"
},
{
"name": "category-theory.representable-functors-precategories",
"value": 107,
"unit": "ms"
},
{
"name": "ring-theory.dependent-products-semirings",
"value": 106,
"unit": "ms"
},
{
"name": "elementary-number-theory.equality-integers",
"value": 106,
"unit": "ms"
},
{
"name": "group-theory.commutator-subgroups",
"value": 106,
"unit": "ms"
},
{
"name": "order-theory.large-meet-semilattices",
"value": 106,
"unit": "ms"
},
{
"name": "foundation.discrete-relaxed-sigma-decompositions",
"value": 106,
"unit": "ms"
},
{
"name": "category-theory.yoneda-lemma-categories",
"value": 106,
"unit": "ms"
},
{
"name": "commutative-algebra.sums-commutative-rings",
"value": 105,
"unit": "ms"
},
{
"name": "foundation.pointed-torsorial-type-families",
"value": 105,
"unit": "ms"
},
{
"name": "higher-group-theory.homomorphisms-higher-groups",
"value": 105,
"unit": "ms"
},
{
"name": "elementary-number-theory.equality-natural-numbers",
"value": 105,
"unit": "ms"
},
{
"name": "foundation.isomorphisms-of-sets",
"value": 105,
"unit": "ms"
},
{
"name": "structured-types.pointed-maps",
"value": 105,
"unit": "ms"
},
{
"name": "order-theory.commuting-squares-of-galois-connections-large-posets",
"value": 105,
"unit": "ms"
},
{
"name": "foundation.universal-property-dependent-function-types",
"value": 104,
"unit": "ms"
},
{
"name": "ring-theory.poset-of-left-ideals-rings",
"value": 104,
"unit": "ms"
},
{
"name": "foundation.fundamental-theorem-of-identity-types",
"value": 104,
"unit": "ms"
},
{
"name": "elementary-number-theory.infinitude-of-primes",
"value": 103,
"unit": "ms"
},
{
"name": "foundation.homotopy-induction",
"value": 103,
"unit": "ms"
},
{
"name": "group-theory.monoids",
"value": 103,
"unit": "ms"
},
{
"name": "category-theory.representing-arrow-category",
"value": 103,
"unit": "ms"
},
{
"name": "elementary-number-theory.well-ordering-principle-natural-numbers",
"value": 103,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.cocones-under-spans-of-pointed-types",
"value": 103,
"unit": "ms"
},
{
"name": "foundation.0-maps",
"value": 102,
"unit": "ms"
},
{
"name": "order-theory.decidable-total-orders",
"value": 102,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.closed-modalities",
"value": 101,
"unit": "ms"
},
{
"name": "commutative-algebra.poset-of-radical-ideals-commutative-rings",
"value": 101,
"unit": "ms"
},
{
"name": "foundation.universal-property-cartesian-product-types",
"value": 101,
"unit": "ms"
},
{
"name": "foundation.functoriality-function-types",
"value": 101,
"unit": "ms"
},
{
"name": "foundation.propositional-maps",
"value": 100,
"unit": "ms"
},
{
"name": "foundation.cartesian-morphisms-arrows",
"value": 100,
"unit": "ms"
},
{
"name": "elementary-number-theory.inequality-integers",
"value": 100,
"unit": "ms"
},
{
"name": "elementary-number-theory.finitely-cyclic-maps",
"value": 99,
"unit": "ms"
},
{
"name": "foundation.precomposition-functions-into-subuniverses",
"value": 99,
"unit": "ms"
},
{
"name": "category-theory.maps-categories",
"value": 98,
"unit": "ms"
},
{
"name": "higher-group-theory.iterated-cartesian-products-higher-groups",
"value": 98,
"unit": "ms"
},
{
"name": "foundation.symmetric-binary-relations",
"value": 98,
"unit": "ms"
},
{
"name": "graph-theory.enriched-undirected-graphs",
"value": 98,
"unit": "ms"
},
{
"name": "category-theory.maps-from-small-to-large-categories",
"value": 98,
"unit": "ms"
},
{
"name": "foundation.existential-quantification",
"value": 98,
"unit": "ms"
},
{
"name": "order-theory.homomorphisms-meet-semilattices",
"value": 98,
"unit": "ms"
},
{
"name": "foundation.maybe",
"value": 98,
"unit": "ms"
},
{
"name": "commutative-algebra.prime-ideals-commutative-rings",
"value": 97,
"unit": "ms"
},
{
"name": "ring-theory.poset-of-ideals-rings",
"value": 97,
"unit": "ms"
},
{
"name": "elementary-number-theory.integer-fractions",
"value": 97,
"unit": "ms"
},
{
"name": "foundation.equivalences-spans-families-of-types",
"value": 97,
"unit": "ms"
},
{
"name": "universal-algebra.kernels",
"value": 96,
"unit": "ms"
},
{
"name": "foundation.dependent-universal-property-equivalences",
"value": 96,
"unit": "ms"
},
{
"name": "category-theory.set-magmoids",
"value": 96,
"unit": "ms"
},
{
"name": "foundation.iterated-dependent-product-types",
"value": 96,
"unit": "ms"
},
{
"name": "foundation.booleans",
"value": 96,
"unit": "ms"
},
{
"name": "foundation.uniqueness-set-truncations",
"value": 96,
"unit": "ms"
},
{
"name": "group-theory.homomorphisms-concrete-group-actions",
"value": 96,
"unit": "ms"
},
{
"name": "ring-theory.algebras-rings",
"value": 95,
"unit": "ms"
},
{
"name": "foundation.weak-function-extensionality",
"value": 95,
"unit": "ms"
},
{
"name": "univalent-combinatorics.dependent-function-types",
"value": 95,
"unit": "ms"
},
{
"name": "foundation.binary-transport",
"value": 95,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.1-acyclic-types",
"value": 95,
"unit": "ms"
},
{
"name": "group-theory.torsion-free-groups",
"value": 95,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.induction-principle-pushouts",
"value": 95,
"unit": "ms"
},
{
"name": "order-theory.similarity-of-elements-large-posets",
"value": 95,
"unit": "ms"
},
{
"name": "species.morphisms-species-of-types",
"value": 95,
"unit": "ms"
},
{
"name": "group-theory.full-subsemigroups",
"value": 94,
"unit": "ms"
},
{
"name": "higher-group-theory.free-higher-group-actions",
"value": 94,
"unit": "ms"
},
{
"name": "order-theory.preorders",
"value": 94,
"unit": "ms"
},
{
"name": "foundation.type-arithmetic-cartesian-product-types",
"value": 94,
"unit": "ms"
},
{
"name": "group-theory.free-groups-with-one-generator",
"value": 94,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.loop-spaces",
"value": 94,
"unit": "ms"
},
{
"name": "commutative-algebra.full-ideals-commutative-rings",
"value": 94,
"unit": "ms"
},
{
"name": "lists.sorted-lists",
"value": 93,
"unit": "ms"
},
{
"name": "order-theory.closure-operators-large-posets",
"value": 93,
"unit": "ms"
},
{
"name": "order-theory.dependent-products-large-locales",
"value": 93,
"unit": "ms"
},
{
"name": "elementary-number-theory.maximum-natural-numbers",
"value": 93,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.coequalizers",
"value": 93,
"unit": "ms"
},
{
"name": "foundation.fibers-of-maps",
"value": 93,
"unit": "ms"
},
{
"name": "finite-group-theory.groups-of-order-2",
"value": 92,
"unit": "ms"
},
{
"name": "foundation.whiskering-homotopies-concatenation",
"value": 92,
"unit": "ms"
},
{
"name": "ring-theory.full-ideals-rings",
"value": 92,
"unit": "ms"
},
{
"name": "group-theory.intersections-subgroups-groups",
"value": 92,
"unit": "ms"
},
{
"name": "linear-algebra.scalar-multiplication-vectors-on-rings",
"value": 91,
"unit": "ms"
},
{
"name": "univalent-combinatorics.universal-property-standard-finite-types",
"value": 91,
"unit": "ms"
},
{
"name": "ring-theory.subsets-rings",
"value": 91,
"unit": "ms"
},
{
"name": "species.composition-cauchy-series-species-of-types-in-subuniverses",
"value": 91,
"unit": "ms"
},
{
"name": "species.products-cauchy-series-species-of-types-in-subuniverses",
"value": 91,
"unit": "ms"
},
{
"name": "foundation.structured-type-duality",
"value": 91,
"unit": "ms"
},
{
"name": "order-theory",
"value": 91,
"unit": "ms"
},
{
"name": "foundation.reflecting-maps-equivalence-relations",
"value": 91,
"unit": "ms"
},
{
"name": "ring-theory.function-semirings",
"value": 91,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.wedges-of-pointed-types",
"value": 91,
"unit": "ms"
},
{
"name": "foundation.type-arithmetic-unit-type",
"value": 90,
"unit": "ms"
},
{
"name": "lists.reversing-lists",
"value": 90,
"unit": "ms"
},
{
"name": "order-theory.powers-of-large-locales",
"value": 90,
"unit": "ms"
},
{
"name": "ring-theory.sums-rings",
"value": 90,
"unit": "ms"
},
{
"name": "category-theory.simplex-category",
"value": 89,
"unit": "ms"
},
{
"name": "foundation.inhabited-subtypes",
"value": 89,
"unit": "ms"
},
{
"name": "foundation.subtype-identity-principle",
"value": 88,
"unit": "ms"
},
{
"name": "univalent-combinatorics",
"value": 88,
"unit": "ms"
},
{
"name": "foundation.equivalence-injective-type-families",
"value": 87,
"unit": "ms"
},
{
"name": "commutative-algebra.sums-commutative-semirings",
"value": 87,
"unit": "ms"
},
{
"name": "ring-theory.category-of-cyclic-rings",
"value": 87,
"unit": "ms"
},
{
"name": "elementary-number-theory.minimum-natural-numbers",
"value": 87,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.local-maps",
"value": 86,
"unit": "ms"
},
{
"name": "group-theory.equivalences-semigroups",
"value": 86,
"unit": "ms"
},
{
"name": "category-theory.initial-category",
"value": 86,
"unit": "ms"
},
{
"name": "univalent-combinatorics.necklaces",
"value": 86,
"unit": "ms"
},
{
"name": "category-theory.full-maps-precategories",
"value": 86,
"unit": "ms"
},
{
"name": "ring-theory.function-rings",
"value": 85,
"unit": "ms"
},
{
"name": "category-theory.cores-categories",
"value": 85,
"unit": "ms"
},
{
"name": "foundation.coslice",
"value": 85,
"unit": "ms"
},
{
"name": "elementary-number-theory.fibonacci-sequence",
"value": 85,
"unit": "ms"
},
{
"name": "order-theory.subposets",
"value": 85,
"unit": "ms"
},
{
"name": "ring-theory.commuting-elements-rings",
"value": 85,
"unit": "ms"
},
{
"name": "category-theory.isomorphism-induction-categories",
"value": 85,
"unit": "ms"
},
{
"name": "group-theory.cartesian-products-abelian-groups",
"value": 85,
"unit": "ms"
},
{
"name": "modal-type-theory.flat-modality",
"value": 85,
"unit": "ms"
},
{
"name": "foundation.universal-property-coproduct-types",
"value": 84,
"unit": "ms"
},
{
"name": "foundation.commuting-triangles-of-homotopies",
"value": 84,
"unit": "ms"
},
{
"name": "foundation.functoriality-propositional-truncation",
"value": 84,
"unit": "ms"
},
{
"name": "order-theory.distributive-lattices",
"value": 84,
"unit": "ms"
},
{
"name": "elementary-number-theory",
"value": 84,
"unit": "ms"
},
{
"name": "modal-type-theory.sharp-modality",
"value": 84,
"unit": "ms"
},
{
"name": "foundation.large-locale-of-subtypes",
"value": 84,
"unit": "ms"
},
{
"name": "foundation.category-of-sets",
"value": 84,
"unit": "ms"
},
{
"name": "univalent-combinatorics.finitely-presented-types",
"value": 84,
"unit": "ms"
},
{
"name": "group-theory.group-actions",
"value": 84,
"unit": "ms"
},
{
"name": "foundation.precomposition-dependent-functions",
"value": 83,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.double-loop-spaces",
"value": 83,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.modal-operators",
"value": 82,
"unit": "ms"
},
{
"name": "commutative-algebra.subsets-commutative-rings",
"value": 82,
"unit": "ms"
},
{
"name": "commutative-algebra.dependent-products-commutative-semirings",
"value": 82,
"unit": "ms"
},
{
"name": "species.cauchy-series-species-of-types-in-subuniverses",
"value": 82,
"unit": "ms"
},
{
"name": "foundation.disjunction",
"value": 82,
"unit": "ms"
},
{
"name": "group-theory.dependent-products-abelian-groups",
"value": 82,
"unit": "ms"
},
{
"name": "foundation-core.sets",
"value": 81,
"unit": "ms"
},
{
"name": "category-theory.split-essentially-surjective-functors-precategories",
"value": 81,
"unit": "ms"
},
{
"name": "finite-group-theory.concrete-quaternion-group",
"value": 81,
"unit": "ms"
},
{
"name": "order-theory.least-upper-bounds-large-posets",
"value": 81,
"unit": "ms"
},
{
"name": "univalent-combinatorics.complements-isolated-elements",
"value": 80,
"unit": "ms"
},
{
"name": "linear-algebra.vectors-on-commutative-rings",
"value": 80,
"unit": "ms"
},
{
"name": "commutative-algebra.function-commutative-semirings",
"value": 80,
"unit": "ms"
},
{
"name": "foundation.repetitions-sequences",
"value": 80,
"unit": "ms"
},
{
"name": "foundation.functoriality-pullbacks",
"value": 80,
"unit": "ms"
},
{
"name": "foundation.contractible-maps",
"value": 80,
"unit": "ms"
},
{
"name": "elementary-number-theory.addition-natural-numbers",
"value": 80,
"unit": "ms"
},
{
"name": "commutative-algebra.ideals-commutative-semirings",
"value": 80,
"unit": "ms"
},
{
"name": "foundation.sigma-decomposition-subuniverse",
"value": 80,
"unit": "ms"
},
{
"name": "foundation.trivial-relaxed-sigma-decompositions",
"value": 80,
"unit": "ms"
},
{
"name": "foundation.pi-decompositions-subuniverse",
"value": 80,
"unit": "ms"
},
{
"name": "species.exponentials-cauchy-series-of-types-in-subuniverses",
"value": 79,
"unit": "ms"
},
{
"name": "graph-theory.trails-undirected-graphs",
"value": 79,
"unit": "ms"
},
{
"name": "finite-group-theory.tetrahedra-in-3-space",
"value": 79,
"unit": "ms"
},
{
"name": "foundation.morphisms-span-diagrams",
"value": 79,
"unit": "ms"
},
{
"name": "foundation.path-split-maps",
"value": 79,
"unit": "ms"
},
{
"name": "foundation-core.contractible-maps",
"value": 79,
"unit": "ms"
},
{
"name": "ring-theory",
"value": 79,
"unit": "ms"
},
{
"name": "order-theory.subpreorders",
"value": 78,
"unit": "ms"
},
{
"name": "ring-theory.nilpotent-elements-semirings",
"value": 78,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory",
"value": 78,
"unit": "ms"
},
{
"name": "trees.raising-universe-levels-directed-trees",
"value": 78,
"unit": "ms"
},
{
"name": "foundation.axiom-of-choice",
"value": 78,
"unit": "ms"
},
{
"name": "linear-algebra.functoriality-vectors",
"value": 78,
"unit": "ms"
},
{
"name": "foundation.equivalences-cospans",
"value": 78,
"unit": "ms"
},
{
"name": "commutative-algebra.binomial-theorem-commutative-rings",
"value": 78,
"unit": "ms"
},
{
"name": "foundation.truncated-types",
"value": 77,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.cocartesian-morphisms-arrows",
"value": 77,
"unit": "ms"
},
{
"name": "elementary-number-theory.difference-integers",
"value": 77,
"unit": "ms"
},
{
"name": "species.species-of-types-in-subuniverses",
"value": 77,
"unit": "ms"
},
{
"name": "finite-group-theory.finite-commutative-monoids",
"value": 77,
"unit": "ms"
},
{
"name": "commutative-algebra.products-subsets-commutative-rings",
"value": 76,
"unit": "ms"
},
{
"name": "ring-theory.binomial-theorem-rings",
"value": 76,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.lifts-families-of-elements",
"value": 76,
"unit": "ms"
},
{
"name": "foundation.unit-type",
"value": 76,
"unit": "ms"
},
{
"name": "category-theory.representable-functors-large-precategories",
"value": 76,
"unit": "ms"
},
{
"name": "category-theory.augmented-simplex-category",
"value": 75,
"unit": "ms"
},
{
"name": "elementary-number-theory.unit-similarity-standard-finite-types",
"value": 75,
"unit": "ms"
},
{
"name": "foundation.binary-embeddings",
"value": 75,
"unit": "ms"
},
{
"name": "foundation.diagonal-maps-of-types",
"value": 75,
"unit": "ms"
},
{
"name": "foundation.equivalences-span-diagrams-families-of-types",
"value": 74,
"unit": "ms"
},
{
"name": "elementary-number-theory.squares-natural-numbers",
"value": 74,
"unit": "ms"
},
{
"name": "order-theory.lattices",
"value": 74,
"unit": "ms"
},
{
"name": "univalent-combinatorics.trivial-sigma-decompositions",
"value": 74,
"unit": "ms"
},
{
"name": "ring-theory.intersections-ideals-rings",
"value": 74,
"unit": "ms"
},
{
"name": "foundation-core.propositional-maps",
"value": 73,
"unit": "ms"
},
{
"name": "commutative-algebra.binomial-theorem-commutative-semirings",
"value": 73,
"unit": "ms"
},
{
"name": "linear-algebra.vectors-on-commutative-semirings",
"value": 73,
"unit": "ms"
},
{
"name": "univalent-combinatorics.discrete-sigma-decompositions",
"value": 73,
"unit": "ms"
},
{
"name": "category-theory.maps-from-small-to-large-precategories",
"value": 72,
"unit": "ms"
},
{
"name": "group-theory.pullbacks-subsemigroups",
"value": 72,
"unit": "ms"
},
{
"name": "lists.lists-discrete-types",
"value": 72,
"unit": "ms"
},
{
"name": "elementary-number-theory.relatively-prime-natural-numbers",
"value": 72,
"unit": "ms"
},
{
"name": "univalent-combinatorics.inequality-types-with-counting",
"value": 72,
"unit": "ms"
},
{
"name": "order-theory.large-preorders",
"value": 72,
"unit": "ms"
},
{
"name": "category-theory.natural-numbers-object-precategories",
"value": 72,
"unit": "ms"
},
{
"name": "foundation-core.operations-span-diagrams",
"value": 72,
"unit": "ms"
},
{
"name": "linear-algebra.matrices-on-rings",
"value": 72,
"unit": "ms"
},
{
"name": "foundation.action-on-homotopies-functions",
"value": 72,
"unit": "ms"
},
{
"name": "ring-theory.kernels-of-ring-homomorphisms",
"value": 72,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.connected-set-bundles-circle",
"value": 71,
"unit": "ms"
},
{
"name": "trees.inequality-w-types",
"value": 71,
"unit": "ms"
},
{
"name": "foundation.empty-types",
"value": 71,
"unit": "ms"
},
{
"name": "group-theory.cyclic-groups",
"value": 71,
"unit": "ms"
},
{
"name": "foundation-core.diagonal-maps-of-types",
"value": 70,
"unit": "ms"
},
{
"name": "foundation.mere-equivalences",
"value": 70,
"unit": "ms"
},
{
"name": "foundation-core.invertible-maps",
"value": 70,
"unit": "ms"
},
{
"name": "order-theory.decidable-total-preorders",
"value": 70,
"unit": "ms"
},
{
"name": "order-theory.large-subsuplattices",
"value": 70,
"unit": "ms"
},
{
"name": "foundation.multivariable-operations",
"value": 70,
"unit": "ms"
},
{
"name": "structured-types.conjugation-pointed-types",
"value": 70,
"unit": "ms"
},
{
"name": "order-theory.locales",
"value": 70,
"unit": "ms"
},
{
"name": "group-theory.category-of-group-actions",
"value": 69,
"unit": "ms"
},
{
"name": "foundation-core.decidable-propositions",
"value": 69,
"unit": "ms"
},
{
"name": "group-theory.stabilizer-groups-concrete-group-actions",
"value": 69,
"unit": "ms"
},
{
"name": "univalent-combinatorics.retracts-of-finite-types",
"value": 69,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.spectra",
"value": 69,
"unit": "ms"
},
{
"name": "group-theory.cartesian-products-groups",
"value": 69,
"unit": "ms"
},
{
"name": "commutative-algebra.intersections-ideals-commutative-rings",
"value": 69,
"unit": "ms"
},
{
"name": "elementary-number-theory.parity-natural-numbers",
"value": 68,
"unit": "ms"
},
{
"name": "graph-theory.embeddings-undirected-graphs",
"value": 68,
"unit": "ms"
},
{
"name": "order-theory.large-subposets",
"value": 68,
"unit": "ms"
},
{
"name": "group-theory.category-of-orbits-groups",
"value": 68,
"unit": "ms"
},
{
"name": "category-theory.one-object-precategories",
"value": 68,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.universal-property-suspensions",
"value": 68,
"unit": "ms"
},
{
"name": "structured-types.pointed-cartesian-product-types",
"value": 68,
"unit": "ms"
},
{
"name": "commutative-algebra.poset-of-ideals-commutative-rings",
"value": 68,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.null-types",
"value": 68,
"unit": "ms"
},
{
"name": "univalent-combinatorics.decidable-dependent-function-types",
"value": 68,
"unit": "ms"
},
{
"name": "order-theory.dependent-products-large-suplattices",
"value": 68,
"unit": "ms"
},
{
"name": "group-theory.powers-of-elements-groups",
"value": 67,
"unit": "ms"
},
{
"name": "structured-types.wild-monoids",
"value": 67,
"unit": "ms"
},
{
"name": "foundation.unordered-tuples-of-types",
"value": 67,
"unit": "ms"
},
{
"name": "category-theory.natural-transformations-functors-large-categories",
"value": 66,
"unit": "ms"
},
{
"name": "foundation.split-surjective-maps",
"value": 66,
"unit": "ms"
},
{
"name": "elementary-number-theory.unit-elements-standard-finite-types",
"value": 66,
"unit": "ms"
},
{
"name": "foundation.binary-homotopies",
"value": 66,
"unit": "ms"
},
{
"name": "elementary-number-theory.sums-of-natural-numbers",
"value": 66,
"unit": "ms"
},
{
"name": "category-theory.products-of-precategories",
"value": 66,
"unit": "ms"
},
{
"name": "univalent-combinatorics.decidable-propositions",
"value": 66,
"unit": "ms"
},
{
"name": "order-theory.dependent-products-large-meet-semilattices",
"value": 66,
"unit": "ms"
},
{
"name": "category-theory.exponential-objects-precategories",
"value": 66,
"unit": "ms"
},
{
"name": "linear-algebra.transposition-matrices",
"value": 66,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.pullback-property-pushouts",
"value": 65,
"unit": "ms"
},
{
"name": "elementary-number-theory.minimum-standard-finite-types",
"value": 65,
"unit": "ms"
},
{
"name": "modal-type-theory.sharp-codiscrete-types",
"value": 65,
"unit": "ms"
},
{
"name": "foundation.homotopy-algebra",
"value": 65,
"unit": "ms"
},
{
"name": "group-theory.representations-monoids-precategories",
"value": 65,
"unit": "ms"
},
{
"name": "foundation-core.operations-spans",
"value": 64,
"unit": "ms"
},
{
"name": "foundation.truncated-maps",
"value": 64,
"unit": "ms"
},
{
"name": "foundation.dependent-telescopes",
"value": 64,
"unit": "ms"
},
{
"name": "foundation.double-powersets",
"value": 64,
"unit": "ms"
},
{
"name": "higher-group-theory.cartesian-products-higher-groups",
"value": 64,
"unit": "ms"
},
{
"name": "reflection.definitions",
"value": 64,
"unit": "ms"
},
{
"name": "real-numbers.dedekind-real-numbers",
"value": 64,
"unit": "ms"
},
{
"name": "group-theory.commutative-monoids",
"value": 63,
"unit": "ms"
},
{
"name": "elementary-number-theory.squares-integers",
"value": 63,
"unit": "ms"
},
{
"name": "order-theory.suplattices",
"value": 63,
"unit": "ms"
},
{
"name": "elementary-number-theory.euclidean-division-natural-numbers",
"value": 63,
"unit": "ms"
},
{
"name": "foundation.unordered-pairs-of-types",
"value": 63,
"unit": "ms"
},
{
"name": "organic-chemistry.alcohols",
"value": 63,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.cavallos-trick",
"value": 62,
"unit": "ms"
},
{
"name": "order-theory.total-orders",
"value": 62,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.cofibers",
"value": 62,
"unit": "ms"
},
{
"name": "category-theory.pointed-endofunctors-categories",
"value": 62,
"unit": "ms"
},
{
"name": "elementary-number-theory.maximum-standard-finite-types",
"value": 62,
"unit": "ms"
},
{
"name": "ring-theory.subsets-semirings",
"value": 61,
"unit": "ms"
},
{
"name": "structured-types.pointed-universal-property-contractible-types",
"value": 61,
"unit": "ms"
},
{
"name": "foundation.implicit-function-types",
"value": 61,
"unit": "ms"
},
{
"name": "structured-types.mere-equivalences-types-equipped-with-endomorphisms",
"value": 61,
"unit": "ms"
},
{
"name": "foundation.universal-property-contractible-types",
"value": 60,
"unit": "ms"
},
{
"name": "foundation-core.commuting-triangles-of-maps",
"value": 60,
"unit": "ms"
},
{
"name": "category-theory.pointed-endofunctors-precategories",
"value": 60,
"unit": "ms"
},
{
"name": "group-theory.dependent-products-groups",
"value": 60,
"unit": "ms"
},
{
"name": "category-theory.homotopies-natural-transformations-large-precategories",
"value": 60,
"unit": "ms"
},
{
"name": "foundation.commuting-tetrahedra-of-homotopies",
"value": 60,
"unit": "ms"
},
{
"name": "order-theory.upper-bounds-posets",
"value": 60,
"unit": "ms"
},
{
"name": "group-theory.function-abelian-groups",
"value": 60,
"unit": "ms"
},
{
"name": "graph-theory.neighbors-undirected-graphs",
"value": 60,
"unit": "ms"
},
{
"name": "group-theory.powers-of-elements-commutative-monoids",
"value": 59,
"unit": "ms"
},
{
"name": "group-theory.semigroups",
"value": 59,
"unit": "ms"
},
{
"name": "foundation.universal-property-identity-systems",
"value": 59,
"unit": "ms"
},
{
"name": "foundation.products-unordered-pairs-of-types",
"value": 59,
"unit": "ms"
},
{
"name": "foundation.multivariable-functoriality-set-quotients",
"value": 59,
"unit": "ms"
},
{
"name": "foundation.torsorial-type-families",
"value": 58,
"unit": "ms"
},
{
"name": "category-theory.constant-functors",
"value": 58,
"unit": "ms"
},
{
"name": "foundation.symmetric-cores-binary-relations",
"value": 58,
"unit": "ms"
},
{
"name": "elementary-number-theory.proper-divisors-natural-numbers",
"value": 58,
"unit": "ms"
},
{
"name": "group-theory.symmetric-concrete-groups",
"value": 58,
"unit": "ms"
},
{
"name": "order-theory.decidable-posets",
"value": 58,
"unit": "ms"
},
{
"name": "group-theory.centers-groups",
"value": 58,
"unit": "ms"
},
{
"name": "commutative-algebra",
"value": 57,
"unit": "ms"
},
{
"name": "foundation.dependent-inverse-sequential-diagrams",
"value": 57,
"unit": "ms"
},
{
"name": "foundation.large-binary-relations",
"value": 57,
"unit": "ms"
},
{
"name": "elementary-number-theory.binomial-theorem-integers",
"value": 57,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.multiplication-circle",
"value": 57,
"unit": "ms"
},
{
"name": "foundation.tight-apartness-relations",
"value": 56,
"unit": "ms"
},
{
"name": "foundation.universal-property-unit-type",
"value": 56,
"unit": "ms"
},
{
"name": "foundation.double-negation",
"value": 56,
"unit": "ms"
},
{
"name": "univalent-combinatorics.embeddings",
"value": 56,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.factorization-operations-global-function-classes",
"value": 56,
"unit": "ms"
},
{
"name": "commutative-algebra.subsets-commutative-semirings",
"value": 56,
"unit": "ms"
},
{
"name": "foundation.operations-span-diagrams",
"value": 56,
"unit": "ms"
},
{
"name": "foundation.equality-dependent-function-types",
"value": 56,
"unit": "ms"
},
{
"name": "commutative-algebra.nilradical-commutative-rings",
"value": 56,
"unit": "ms"
},
{
"name": "structured-types.morphisms-types-equipped-with-automorphisms",
"value": 56,
"unit": "ms"
},
{
"name": "graph-theory.polygons",
"value": 56,
"unit": "ms"
},
{
"name": "graph-theory.faithful-morphisms-undirected-graphs",
"value": 55,
"unit": "ms"
},
{
"name": "organic-chemistry.hydrocarbons",
"value": 55,
"unit": "ms"
},
{
"name": "group-theory.category-of-groups",
"value": 55,
"unit": "ms"
},
{
"name": "order-theory.accessible-elements-relations",
"value": 55,
"unit": "ms"
},
{
"name": "order-theory.principal-lower-sets-large-posets",
"value": 55,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.conjugation-loops",
"value": 55,
"unit": "ms"
},
{
"name": "order-theory.homomorphisms-frames",
"value": 55,
"unit": "ms"
},
{
"name": "structured-types.morphisms-wild-monoids",
"value": 55,
"unit": "ms"
},
{
"name": "order-theory.lower-bounds-posets",
"value": 55,
"unit": "ms"
},
{
"name": "foundation.action-on-equivalences-functions",
"value": 54,
"unit": "ms"
},
{
"name": "order-theory.principal-upper-sets-large-posets",
"value": 54,
"unit": "ms"
},
{
"name": "category-theory.subterminal-precategories",
"value": 54,
"unit": "ms"
},
{
"name": "modal-type-theory.flat-dependent-pair-types",
"value": 54,
"unit": "ms"
},
{
"name": "structured-types.function-wild-monoids",
"value": 54,
"unit": "ms"
},
{
"name": "order-theory.finite-total-orders",
"value": 54,
"unit": "ms"
},
{
"name": "foundation.singleton-induction",
"value": 54,
"unit": "ms"
},
{
"name": "foundation.equivalences-inverse-sequential-diagrams",
"value": 54,
"unit": "ms"
},
{
"name": "elementary-number-theory.repeating-element-standard-finite-type",
"value": 54,
"unit": "ms"
},
{
"name": "elementary-number-theory.sieve-of-eratosthenes",
"value": 54,
"unit": "ms"
},
{
"name": "higher-group-theory.homomorphisms-higher-group-actions",
"value": 53,
"unit": "ms"
},
{
"name": "ring-theory.quotient-rings",
"value": 53,
"unit": "ms"
},
{
"name": "elementary-number-theory.cofibonacci",
"value": 53,
"unit": "ms"
},
{
"name": "foundation.connected-components",
"value": 53,
"unit": "ms"
},
{
"name": "graph-theory.finite-graphs",
"value": 53,
"unit": "ms"
},
{
"name": "group-theory.centralizer-subgroups",
"value": 53,
"unit": "ms"
},
{
"name": "univalent-combinatorics.classical-finite-types",
"value": 53,
"unit": "ms"
},
{
"name": "foundation.action-on-equivalences-type-families-over-subuniverses",
"value": 53,
"unit": "ms"
},
{
"name": "group-theory.precategory-of-group-actions",
"value": 53,
"unit": "ms"
},
{
"name": "group-theory.commuting-elements-semigroups",
"value": 52,
"unit": "ms"
},
{
"name": "universal-algebra.congruences",
"value": 52,
"unit": "ms"
},
{
"name": "category-theory.essentially-surjective-functors-precategories",
"value": 52,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.functoriality-pullback-hom",
"value": 52,
"unit": "ms"
},
{
"name": "order-theory.homomorphisms-meet-sup-lattices",
"value": 52,
"unit": "ms"
},
{
"name": "trees.w-type-of-natural-numbers",
"value": 52,
"unit": "ms"
},
{
"name": "univalent-combinatorics.function-types",
"value": 52,
"unit": "ms"
},
{
"name": "group-theory.kernels-homomorphisms-concrete-groups",
"value": 52,
"unit": "ms"
},
{
"name": "graph-theory.raising-universe-levels-directed-graphs",
"value": 52,
"unit": "ms"
},
{
"name": "foundation.preunivalence",
"value": 52,
"unit": "ms"
},
{
"name": "foundation.full-subtypes",
"value": 52,
"unit": "ms"
},
{
"name": "univalent-combinatorics.decidable-dependent-pair-types",
"value": 52,
"unit": "ms"
},
{
"name": "group-theory.endomorphism-rings-abelian-groups",
"value": 52,
"unit": "ms"
},
{
"name": "order-theory.homomorphisms-sup-lattices",
"value": 52,
"unit": "ms"
},
{
"name": "univalent-combinatorics.repetitions-of-values",
"value": 52,
"unit": "ms"
},
{
"name": "higher-group-theory.equivalences-higher-groups",
"value": 51,
"unit": "ms"
},
{
"name": "ring-theory.nilpotent-elements-rings",
"value": 51,
"unit": "ms"
},
{
"name": "foundation.products-equivalence-relations",
"value": 51,
"unit": "ms"
},
{
"name": "foundation.universal-property-maybe",
"value": 51,
"unit": "ms"
},
{
"name": "group-theory.kernels-homomorphisms-abelian-groups",
"value": 51,
"unit": "ms"
},
{
"name": "foundation.negated-equality",
"value": 51,
"unit": "ms"
},
{
"name": "commutative-algebra.radical-ideals-generated-by-subsets-commutative-rings",
"value": 51,
"unit": "ms"
},
{
"name": "group-theory.category-of-semigroups",
"value": 51,
"unit": "ms"
},
{
"name": "category-theory.functors-large-categories",
"value": 50,
"unit": "ms"
},
{
"name": "elementary-number-theory.binomial-theorem-natural-numbers",
"value": 50,
"unit": "ms"
},
{
"name": "foundation.postcomposition-dependent-functions",
"value": 50,
"unit": "ms"
},
{
"name": "foundation.decidable-maps",
"value": 50,
"unit": "ms"
},
{
"name": "elementary-number-theory.multiplication-integer-fractions",
"value": 50,
"unit": "ms"
},
{
"name": "foundation.transport-along-homotopies",
"value": 50,
"unit": "ms"
},
{
"name": "foundation.conjunction",
"value": 50,
"unit": "ms"
},
{
"name": "foundation.decidable-dependent-pair-types",
"value": 50,
"unit": "ms"
},
{
"name": "graph-theory.undirected-graphs",
"value": 50,
"unit": "ms"
},
{
"name": "ring-theory.powers-of-elements-semirings",
"value": 50,
"unit": "ms"
},
{
"name": "group-theory.multiples-of-elements-abelian-groups",
"value": 50,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.tangent-spheres",
"value": 50,
"unit": "ms"
},
{
"name": "lists.sorting-algorithms-lists",
"value": 50,
"unit": "ms"
},
{
"name": "ring-theory.precategory-of-semirings",
"value": 50,
"unit": "ms"
},
{
"name": "foundation.iterated-dependent-pair-types",
"value": 50,
"unit": "ms"
},
{
"name": "group-theory.function-groups",
"value": 49,
"unit": "ms"
},
{
"name": "order-theory.meet-suplattices",
"value": 49,
"unit": "ms"
},
{
"name": "category-theory.isomorphism-induction-precategories",
"value": 49,
"unit": "ms"
},
{
"name": "order-theory.precategory-of-posets",
"value": 49,
"unit": "ms"
},
{
"name": "group-theory.commutators-of-elements-groups",
"value": 49,
"unit": "ms"
},
{
"name": "order-theory.similarity-of-order-preserving-maps-large-posets",
"value": 49,
"unit": "ms"
},
{
"name": "foundation.identity-systems",
"value": 49,
"unit": "ms"
},
{
"name": "lists.flattening-lists",
"value": 49,
"unit": "ms"
},
{
"name": "order-theory.chains-preorders",
"value": 49,
"unit": "ms"
},
{
"name": "commutative-algebra.powers-of-elements-commutative-rings",
"value": 49,
"unit": "ms"
},
{
"name": "trees.universal-multiset",
"value": 48,
"unit": "ms"
},
{
"name": "group-theory.subsets-semigroups",
"value": 48,
"unit": "ms"
},
{
"name": "group-theory.central-elements-groups",
"value": 48,
"unit": "ms"
},
{
"name": "ring-theory.multiples-of-elements-rings",
"value": 48,
"unit": "ms"
},
{
"name": "structured-types.wild-loops",
"value": 48,
"unit": "ms"
},
{
"name": "elementary-number-theory.distance-integers",
"value": 48,
"unit": "ms"
},
{
"name": "finite-algebra.semisimple-commutative-finite-rings",
"value": 48,
"unit": "ms"
},
{
"name": "univalent-combinatorics.sums-of-natural-numbers",
"value": 48,
"unit": "ms"
},
{
"name": "foundation-core.embeddings",
"value": 48,
"unit": "ms"
},
{
"name": "foundation-core.empty-types",
"value": 48,
"unit": "ms"
},
{
"name": "graph-theory.directed-graphs",
"value": 48,
"unit": "ms"
},
{
"name": "graph-theory.complete-bipartite-graphs",
"value": 47,
"unit": "ms"
},
{
"name": "group-theory.cayleys-theorem",
"value": 47,
"unit": "ms"
},
{
"name": "univalent-combinatorics.unions-subtypes",
"value": 47,
"unit": "ms"
},
{
"name": "category-theory.anafunctors-categories",
"value": 47,
"unit": "ms"
},
{
"name": "foundation.subtype-duality",
"value": 47,
"unit": "ms"
},
{
"name": "elementary-number-theory.monoid-of-natural-numbers-with-maximum",
"value": 46,
"unit": "ms"
},
{
"name": "foundation.operations-spans",
"value": 46,
"unit": "ms"
},
{
"name": "foundation.products-unordered-tuples-of-types",
"value": 46,
"unit": "ms"
},
{
"name": "univalent-combinatorics.skipping-element-standard-finite-types",
"value": 46,
"unit": "ms"
},
{
"name": "category-theory.embeddings-precategories",
"value": 46,
"unit": "ms"
},
{
"name": "order-theory.similarity-of-elements-large-preorders",
"value": 46,
"unit": "ms"
},
{
"name": "trees",
"value": 46,
"unit": "ms"
},
{
"name": "category-theory.full-functors-precategories",
"value": 46,
"unit": "ms"
},
{
"name": "foundation.unital-binary-operations",
"value": 45,
"unit": "ms"
},
{
"name": "order-theory.chains-posets",
"value": 45,
"unit": "ms"
},
{
"name": "category-theory.epimorphisms-in-large-precategories",
"value": 45,
"unit": "ms"
},
{
"name": "order-theory.large-subpreorders",
"value": 45,
"unit": "ms"
},
{
"name": "univalent-combinatorics.kuratowsky-finite-sets",
"value": 45,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-universal-property-suspensions",
"value": 45,
"unit": "ms"
},
{
"name": "foundation.pullback-squares",
"value": 45,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.truncated-acyclic-types",
"value": 45,
"unit": "ms"
},
{
"name": "foundation-core",
"value": 45,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.wide-global-function-classes",
"value": 44,
"unit": "ms"
},
{
"name": "elementary-number-theory.initial-segments-natural-numbers",
"value": 44,
"unit": "ms"
},
{
"name": "universal-algebra.algebras-of-theories",
"value": 44,
"unit": "ms"
},
{
"name": "structured-types.dependent-products-h-spaces",
"value": 44,
"unit": "ms"
},
{
"name": "foundation.mere-equality",
"value": 44,
"unit": "ms"
},
{
"name": "foundation.universal-property-empty-type",
"value": 44,
"unit": "ms"
},
{
"name": "commutative-algebra.precategory-of-commutative-semirings",
"value": 44,
"unit": "ms"
},
{
"name": "commutative-algebra.precategory-of-commutative-rings",
"value": 44,
"unit": "ms"
},
{
"name": "foundation.discrete-types",
"value": 44,
"unit": "ms"
},
{
"name": "category-theory.monomorphisms-in-large-precategories",
"value": 44,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.premanifolds",
"value": 43,
"unit": "ms"
},
{
"name": "foundation.span-diagrams",
"value": 43,
"unit": "ms"
},
{
"name": "linear-algebra.matrices",
"value": 43,
"unit": "ms"
},
{
"name": "group-theory.commuting-elements-groups",
"value": 43,
"unit": "ms"
},
{
"name": "order-theory.finite-posets",
"value": 43,
"unit": "ms"
},
{
"name": "foundation.retracts-of-types",
"value": 43,
"unit": "ms"
},
{
"name": "group-theory.cartesian-products-monoids",
"value": 43,
"unit": "ms"
},
{
"name": "category-theory.initial-objects-precategories",
"value": 43,
"unit": "ms"
},
{
"name": "elementary-number-theory.divisibility-standard-finite-types",
"value": 43,
"unit": "ms"
},
{
"name": "ring-theory.precategory-of-rings",
"value": 43,
"unit": "ms"
},
{
"name": "trees.w-type-of-propositions",
"value": 43,
"unit": "ms"
},
{
"name": "foundation.mere-embeddings",
"value": 42,
"unit": "ms"
},
{
"name": "graph-theory.totally-faithful-morphisms-undirected-graphs",
"value": 42,
"unit": "ms"
},
{
"name": "category-theory.natural-isomorphisms-functors-large-precategories",
"value": 42,
"unit": "ms"
},
{
"name": "category-theory.large-subprecategories",
"value": 42,
"unit": "ms"
},
{
"name": "group-theory.intersections-subgroups-abelian-groups",
"value": 42,
"unit": "ms"
},
{
"name": "order-theory.decidable-subposets",
"value": 42,
"unit": "ms"
},
{
"name": "group-theory.subsets-monoids",
"value": 42,
"unit": "ms"
},
{
"name": "foundation-core.path-split-maps",
"value": 42,
"unit": "ms"
},
{
"name": "modal-type-theory.flat-discrete-types",
"value": 42,
"unit": "ms"
},
{
"name": "group-theory.wild-representations-monoids",
"value": 42,
"unit": "ms"
},
{
"name": "group-theory.category-of-abelian-groups",
"value": 42,
"unit": "ms"
},
{
"name": "foundation.decidable-relations",
"value": 42,
"unit": "ms"
},
{
"name": "foundation.transport-along-identifications",
"value": 42,
"unit": "ms"
},
{
"name": "group-theory.monoid-actions",
"value": 42,
"unit": "ms"
},
{
"name": "foundation-core.1-types",
"value": 42,
"unit": "ms"
},
{
"name": "ring-theory.central-elements-rings",
"value": 41,
"unit": "ms"
},
{
"name": "ring-theory.intersections-ideals-semirings",
"value": 41,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.groups-of-loops-in-1-types",
"value": 41,
"unit": "ms"
},
{
"name": "ring-theory.nil-ideals-rings",
"value": 41,
"unit": "ms"
},
{
"name": "order-theory.upper-bounds-large-posets",
"value": 41,
"unit": "ms"
},
{
"name": "foundation.morphisms-spans",
"value": 41,
"unit": "ms"
},
{
"name": "group-theory.rational-commutative-monoids",
"value": 41,
"unit": "ms"
},
{
"name": "foundation.type-arithmetic-dependent-function-types",
"value": 41,
"unit": "ms"
},
{
"name": "group-theory.free-concrete-group-actions",
"value": 41,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems",
"value": 41,
"unit": "ms"
},
{
"name": "group-theory.centers-monoids",
"value": 41,
"unit": "ms"
},
{
"name": "order-theory.homomorphisms-large-frames",
"value": 40,
"unit": "ms"
},
{
"name": "order-theory.decidable-subpreorders",
"value": 40,
"unit": "ms"
},
{
"name": "group-theory.equivalences-concrete-groups",
"value": 40,
"unit": "ms"
},
{
"name": "foundation.universal-property-equivalences",
"value": 40,
"unit": "ms"
},
{
"name": "univalent-combinatorics.image-of-maps",
"value": 40,
"unit": "ms"
},
{
"name": "category-theory.essentially-injective-functors-precategories",
"value": 40,
"unit": "ms"
},
{
"name": "order-theory.well-founded-relations",
"value": 40,
"unit": "ms"
},
{
"name": "organic-chemistry.methane",
"value": 40,
"unit": "ms"
},
{
"name": "foundation-core.univalence",
"value": 40,
"unit": "ms"
},
{
"name": "order-theory.total-preorders",
"value": 39,
"unit": "ms"
},
{
"name": "order-theory.homomorphisms-large-meet-semilattices",
"value": 39,
"unit": "ms"
},
{
"name": "group-theory.inverse-semigroups",
"value": 39,
"unit": "ms"
},
{
"name": "set-theory.baire-space",
"value": 39,
"unit": "ms"
},
{
"name": "foundation.decidable-dependent-function-types",
"value": 39,
"unit": "ms"
},
{
"name": "elementary-number-theory.peano-arithmetic",
"value": 39,
"unit": "ms"
},
{
"name": "foundation.universal-property-booleans",
"value": 39,
"unit": "ms"
},
{
"name": "foundation.commuting-tetrahedra-of-maps",
"value": 39,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.dependent-sequential-diagrams",
"value": 39,
"unit": "ms"
},
{
"name": "group-theory.precategory-of-concrete-groups",
"value": 39,
"unit": "ms"
},
{
"name": "commutative-algebra.multiples-of-elements-commutative-rings",
"value": 39,
"unit": "ms"
},
{
"name": "foundation.subsingleton-induction",
"value": 39,
"unit": "ms"
},
{
"name": "elementary-number-theory.kolakoski-sequence",
"value": 39,
"unit": "ms"
},
{
"name": "elementary-number-theory.addition-rational-numbers",
"value": 39,
"unit": "ms"
},
{
"name": "elementary-number-theory.decidable-total-order-natural-numbers",
"value": 39,
"unit": "ms"
},
{
"name": "group-theory.dependent-products-monoids",
"value": 39,
"unit": "ms"
},
{
"name": "structured-types.function-h-spaces",
"value": 38,
"unit": "ms"
},
{
"name": "order-theory.homomorphisms-large-locales",
"value": 38,
"unit": "ms"
},
{
"name": "univalent-combinatorics.cubes",
"value": 38,
"unit": "ms"
},
{
"name": "order-theory.lower-bounds-large-posets",
"value": 38,
"unit": "ms"
},
{
"name": "univalent-combinatorics.equivalences",
"value": 38,
"unit": "ms"
},
{
"name": "foundation.large-locale-of-propositions",
"value": 38,
"unit": "ms"
},
{
"name": "ring-theory.trivial-rings",
"value": 38,
"unit": "ms"
},
{
"name": "reflection.terms",
"value": 38,
"unit": "ms"
},
{
"name": "structured-types.commuting-squares-of-pointed-maps",
"value": 38,
"unit": "ms"
},
{
"name": "order-theory.decidable-preorders",
"value": 38,
"unit": "ms"
},
{
"name": "category-theory.terminal-objects-precategories",
"value": 38,
"unit": "ms"
},
{
"name": "group-theory.orders-of-elements-groups",
"value": 37,
"unit": "ms"
},
{
"name": "trees.rooted-undirected-trees",
"value": 37,
"unit": "ms"
},
{
"name": "order-theory.homomorphisms-large-suplattices",
"value": 37,
"unit": "ms"
},
{
"name": "group-theory.torsion-elements-groups",
"value": 37,
"unit": "ms"
},
{
"name": "foundation.unions-subtypes",
"value": 37,
"unit": "ms"
},
{
"name": "univalent-combinatorics.cycle-partitions",
"value": 37,
"unit": "ms"
},
{
"name": "elementary-number-theory.poset-of-natural-numbers-ordered-by-divisibility",
"value": 37,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.prespectra",
"value": 37,
"unit": "ms"
},
{
"name": "group-theory.subsets-commutative-monoids",
"value": 37,
"unit": "ms"
},
{
"name": "species.cauchy-series-species-of-types",
"value": 37,
"unit": "ms"
},
{
"name": "graph-theory.edge-coloured-undirected-graphs",
"value": 37,
"unit": "ms"
},
{
"name": "elementary-number-theory.exponentiation-natural-numbers",
"value": 37,
"unit": "ms"
},
{
"name": "group-theory.commuting-elements-monoids",
"value": 37,
"unit": "ms"
},
{
"name": "order-theory.directed-families",
"value": 37,
"unit": "ms"
},
{
"name": "foundation.type-arithmetic-booleans",
"value": 37,
"unit": "ms"
},
{
"name": "category-theory.embedding-maps-precategories",
"value": 36,
"unit": "ms"
},
{
"name": "group-theory.dependent-products-commutative-monoids",
"value": 36,
"unit": "ms"
},
{
"name": "commutative-algebra.category-of-commutative-rings",
"value": 36,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.localizations-subuniverses",
"value": 36,
"unit": "ms"
},
{
"name": "foundation.powersets",
"value": 36,
"unit": "ms"
},
{
"name": "elementary-number-theory.bounded-sums-arithmetic-functions",
"value": 36,
"unit": "ms"
},
{
"name": "elementary-number-theory.strictly-ordered-pairs-of-natural-numbers",
"value": 36,
"unit": "ms"
},
{
"name": "foundation.pullbacks-subtypes",
"value": 36,
"unit": "ms"
},
{
"name": "elementary-number-theory.based-induction-natural-numbers",
"value": 36,
"unit": "ms"
},
{
"name": "higher-group-theory.higher-groups",
"value": 35,
"unit": "ms"
},
{
"name": "category-theory.endomorphisms-in-categories",
"value": 35,
"unit": "ms"
},
{
"name": "order-theory.dependent-products-large-posets",
"value": 35,
"unit": "ms"
},
{
"name": "foundation.precomposition-type-families",
"value": 35,
"unit": "ms"
},
{
"name": "univalent-combinatorics.equality-finite-types",
"value": 35,
"unit": "ms"
},
{
"name": "lists.sorting-algorithms-vectors",
"value": 35,
"unit": "ms"
},
{
"name": "graph-theory.matchings",
"value": 35,
"unit": "ms"
},
{
"name": "univalent-combinatorics.injective-maps",
"value": 35,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.localizations-maps",
"value": 35,
"unit": "ms"
},
{
"name": "order-theory.greatest-lower-bounds-large-posets",
"value": 34,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.acyclic-types",
"value": 34,
"unit": "ms"
},
{
"name": "lists.sort-by-insertion-lists",
"value": 34,
"unit": "ms"
},
{
"name": "foundation.univalence-implies-function-extensionality",
"value": 34,
"unit": "ms"
},
{
"name": "category-theory.sieves-in-categories",
"value": 34,
"unit": "ms"
},
{
"name": "graph-theory.complete-multipartite-graphs",
"value": 34,
"unit": "ms"
},
{
"name": "group-theory.monomorphisms-groups",
"value": 34,
"unit": "ms"
},
{
"name": "group-theory.centers-semigroups",
"value": 34,
"unit": "ms"
},
{
"name": "group-theory.embeddings-groups",
"value": 34,
"unit": "ms"
},
{
"name": "ring-theory.category-of-rings",
"value": 34,
"unit": "ms"
},
{
"name": "foundation-core.families-of-equivalences",
"value": 33,
"unit": "ms"
},
{
"name": "category-theory.endomorphisms-in-precategories",
"value": 33,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.wide-function-classes",
"value": 33,
"unit": "ms"
},
{
"name": "univalent-combinatorics.equivalences-standard-finite-types",
"value": 33,
"unit": "ms"
},
{
"name": "group-theory.function-commutative-monoids",
"value": 33,
"unit": "ms"
},
{
"name": "ring-theory.central-elements-semirings",
"value": 33,
"unit": "ms"
},
{
"name": "structured-types.finite-multiplication-magmas",
"value": 33,
"unit": "ms"
},
{
"name": "species.exponentials-cauchy-series-of-types",
"value": 33,
"unit": "ms"
},
{
"name": "group-theory.surjective-group-homomorphisms",
"value": 33,
"unit": "ms"
},
{
"name": "order-theory.maximal-chains-preorders",
"value": 33,
"unit": "ms"
},
{
"name": "order-theory.maximal-chains-posets",
"value": 33,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.0-acyclic-maps",
"value": 33,
"unit": "ms"
},
{
"name": "group-theory.embeddings-abelian-groups",
"value": 33,
"unit": "ms"
},
{
"name": "foundation.propositions",
"value": 33,
"unit": "ms"
},
{
"name": "foundation.induction-principle-propositional-truncation",
"value": 32,
"unit": "ms"
},
{
"name": "group-theory.function-monoids",
"value": 32,
"unit": "ms"
},
{
"name": "graph-theory.embeddings-directed-graphs",
"value": 32,
"unit": "ms"
},
{
"name": "group-theory.trivial-groups",
"value": 32,
"unit": "ms"
},
{
"name": "foundation.copartial-functions",
"value": 32,
"unit": "ms"
},
{
"name": "foundation.action-on-equivalences-functions-out-of-subuniverses",
"value": 32,
"unit": "ms"
},
{
"name": "group-theory.epimorphisms-groups",
"value": 32,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.local-families-of-types",
"value": 32,
"unit": "ms"
},
{
"name": "foundation.functoriality-sequential-limits",
"value": 32,
"unit": "ms"
},
{
"name": "elementary-number-theory.factorials",
"value": 32,
"unit": "ms"
},
{
"name": "group-theory.cartesian-products-semigroups",
"value": 32,
"unit": "ms"
},
{
"name": "foundation.intersections-subtypes",
"value": 31,
"unit": "ms"
},
{
"name": "order-theory.dependent-products-large-preorders",
"value": 31,
"unit": "ms"
},
{
"name": "species.coproducts-species-of-types",
"value": 31,
"unit": "ms"
},
{
"name": "univalent-combinatorics.ramsey-theory",
"value": 31,
"unit": "ms"
},
{
"name": "universal-algebra.homomorphisms-of-algebras",
"value": 31,
"unit": "ms"
},
{
"name": "elementary-number-theory.natural-numbers",
"value": 31,
"unit": "ms"
},
{
"name": "foundation.subterminal-types",
"value": 31,
"unit": "ms"
},
{
"name": "elementary-number-theory.divisibility-modular-arithmetic",
"value": 31,
"unit": "ms"
},
{
"name": "order-theory.top-elements-posets",
"value": 30,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.descent-circle-constant-families",
"value": 30,
"unit": "ms"
},
{
"name": "group-theory.precategory-of-monoids",
"value": 30,
"unit": "ms"
},
{
"name": "univalent-combinatorics.double-counting",
"value": 30,
"unit": "ms"
},
{
"name": "graph-theory.simple-undirected-graphs",
"value": 30,
"unit": "ms"
},
{
"name": "order-theory.finite-coverings-locales",
"value": 30,
"unit": "ms"
},
{
"name": "foundation.constant-type-families",
"value": 30,
"unit": "ms"
},
{
"name": "foundation.copartial-elements",
"value": 30,
"unit": "ms"
},
{
"name": "elementary-number-theory.nonzero-integers",
"value": 30,
"unit": "ms"
},
{
"name": "ring-theory.local-rings",
"value": 30,
"unit": "ms"
},
{
"name": "order-theory.bottom-elements-posets",
"value": 30,
"unit": "ms"
},
{
"name": "foundation.complements-subtypes",
"value": 30,
"unit": "ms"
},
{
"name": "group-theory.central-elements-semigroups",
"value": 30,
"unit": "ms"
},
{
"name": "commutative-algebra.zariski-topology",
"value": 29,
"unit": "ms"
},
{
"name": "order-theory.inhabited-finite-total-orders",
"value": 29,
"unit": "ms"
},
{
"name": "structured-types.cyclic-types",
"value": 29,
"unit": "ms"
},
{
"name": "foundation.truncation-levels",
"value": 29,
"unit": "ms"
},
{
"name": "higher-group-theory.subgroups-higher-groups",
"value": 29,
"unit": "ms"
},
{
"name": "foundation.whiskering-higher-homotopies-composition",
"value": 29,
"unit": "ms"
},
{
"name": "group-theory.characteristic-subgroups",
"value": 29,
"unit": "ms"
},
{
"name": "group-theory.mere-equivalences-concrete-group-actions",
"value": 29,
"unit": "ms"
},
{
"name": "organic-chemistry.saturated-carbons",
"value": 29,
"unit": "ms"
},
{
"name": "universal-algebra.signatures",
"value": 29,
"unit": "ms"
},
{
"name": "foundation.structure",
"value": 29,
"unit": "ms"
},
{
"name": "group-theory.large-semigroups",
"value": 29,
"unit": "ms"
},
{
"name": "structured-types",
"value": 29,
"unit": "ms"
},
{
"name": "foundation.descent-empty-types",
"value": 29,
"unit": "ms"
},
{
"name": "foundation.endomorphisms",
"value": 28,
"unit": "ms"
},
{
"name": "foundation.small-maps",
"value": 28,
"unit": "ms"
},
{
"name": "elementary-number-theory.legendre-symbol",
"value": 28,
"unit": "ms"
},
{
"name": "foundation.negation",
"value": 28,
"unit": "ms"
},
{
"name": "trees.elementhood-relation-coalgebras-polynomial-endofunctors",
"value": 28,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.0-acyclic-types",
"value": 28,
"unit": "ms"
},
{
"name": "graph-theory.reflecting-maps-undirected-graphs",
"value": 28,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.mere-lifting-properties",
"value": 28,
"unit": "ms"
},
{
"name": "commutative-algebra.local-commutative-rings",
"value": 28,
"unit": "ms"
},
{
"name": "univalent-combinatorics.isotopies-latin-squares",
"value": 28,
"unit": "ms"
},
{
"name": "group-theory.trivial-group-homomorphisms",
"value": 28,
"unit": "ms"
},
{
"name": "foundation.morphisms-binary-relations",
"value": 27,
"unit": "ms"
},
{
"name": "elementary-number-theory.squares-modular-arithmetic",
"value": 27,
"unit": "ms"
},
{
"name": "foundation.cantors-diagonal-argument",
"value": 27,
"unit": "ms"
},
{
"name": "foundation.projective-types",
"value": 27,
"unit": "ms"
},
{
"name": "group-theory.surjective-semigroup-homomorphisms",
"value": 27,
"unit": "ms"
},
{
"name": "structured-types.magmas",
"value": 27,
"unit": "ms"
},
{
"name": "foundation.dependent-homotopies",
"value": 27,
"unit": "ms"
},
{
"name": "univalent-combinatorics.dedekind-finite-sets",
"value": 27,
"unit": "ms"
},
{
"name": "order-theory.reflective-galois-connections-large-posets",
"value": 27,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.lifting-operations",
"value": 26,
"unit": "ms"
},
{
"name": "group-theory.conjugation-concrete-groups",
"value": 26,
"unit": "ms"
},
{
"name": "elementary-number-theory.standard-cyclic-groups",
"value": 26,
"unit": "ms"
},
{
"name": "graph-theory",
"value": 26,
"unit": "ms"
},
{
"name": "univalent-combinatorics.counting-maybe",
"value": 26,
"unit": "ms"
},
{
"name": "trees.bounded-multisets",
"value": 26,
"unit": "ms"
},
{
"name": "commutative-algebra.trivial-commutative-rings",
"value": 26,
"unit": "ms"
},
{
"name": "category-theory.equivalences-of-precategories",
"value": 26,
"unit": "ms"
},
{
"name": "foundation.small-types",
"value": 26,
"unit": "ms"
},
{
"name": "foundation.inverse-sequential-diagrams",
"value": 26,
"unit": "ms"
},
{
"name": "category-theory.representable-functors-categories",
"value": 26,
"unit": "ms"
},
{
"name": "category-theory.rigid-objects-precategories",
"value": 26,
"unit": "ms"
},
{
"name": "structured-types.wild-quasigroups",
"value": 26,
"unit": "ms"
},
{
"name": "univalent-combinatorics.latin-squares",
"value": 26,
"unit": "ms"
},
{
"name": "group-theory.opposite-groups",
"value": 25,
"unit": "ms"
},
{
"name": "species.hasse-weil-species",
"value": 25,
"unit": "ms"
},
{
"name": "group-theory.dependent-products-semigroups",
"value": 25,
"unit": "ms"
},
{
"name": "univalent-combinatorics.petri-nets",
"value": 25,
"unit": "ms"
},
{
"name": "graph-theory.paths-undirected-graphs",
"value": 25,
"unit": "ms"
},
{
"name": "group-theory.precategory-of-commutative-monoids",
"value": 25,
"unit": "ms"
},
{
"name": "univalent-combinatorics.standard-finite-trees",
"value": 25,
"unit": "ms"
},
{
"name": "foundation.multisubsets",
"value": 25,
"unit": "ms"
},
{
"name": "order-theory.similarity-of-order-preserving-maps-large-preorders",
"value": 25,
"unit": "ms"
},
{
"name": "group-theory.transitive-group-actions",
"value": 25,
"unit": "ms"
},
{
"name": "order-theory.lower-types-preorders",
"value": 25,
"unit": "ms"
},
{
"name": "foundation.iterating-involutions",
"value": 25,
"unit": "ms"
},
{
"name": "graph-theory.geometric-realizations-undirected-graphs",
"value": 25,
"unit": "ms"
},
{
"name": "ring-theory.invariant-basis-property-rings",
"value": 25,
"unit": "ms"
},
{
"name": "commutative-algebra.powers-of-elements-commutative-semirings",
"value": 25,
"unit": "ms"
},
{
"name": "elementary-number-theory.taxicab-numbers",
"value": 25,
"unit": "ms"
},
{
"name": "elementary-number-theory.multiplication-lists-of-natural-numbers",
"value": 24,
"unit": "ms"
},
{
"name": "species.equivalences-species-of-types-in-subuniverses",
"value": 24,
"unit": "ms"
},
{
"name": "structured-types.noncoherent-h-spaces",
"value": 24,
"unit": "ms"
},
{
"name": "elementary-number-theory.dirichlet-convolution",
"value": 24,
"unit": "ms"
},
{
"name": "graph-theory.stereoisomerism-enriched-undirected-graphs",
"value": 24,
"unit": "ms"
},
{
"name": "category-theory.discrete-categories",
"value": 24,
"unit": "ms"
},
{
"name": "foundation.binary-equivalences",
"value": 24,
"unit": "ms"
},
{
"name": "trees.elementhood-relation-w-types",
"value": 24,
"unit": "ms"
},
{
"name": "group-theory.precategory-of-groups",
"value": 24,
"unit": "ms"
},
{
"name": "commutative-algebra.nilradicals-commutative-semirings",
"value": 24,
"unit": "ms"
},
{
"name": "category-theory.rigid-objects-categories",
"value": 24,
"unit": "ms"
},
{
"name": "structured-types.faithful-pointed-maps",
"value": 23,
"unit": "ms"
},
{
"name": "group-theory.trivial-subgroups",
"value": 23,
"unit": "ms"
},
{
"name": "finite-group-theory",
"value": 23,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.suspensions-of-pointed-types",
"value": 23,
"unit": "ms"
},
{
"name": "group-theory.products-of-tuples-of-elements-commutative-monoids",
"value": 23,
"unit": "ms"
},
{
"name": "ring-theory.idempotent-elements-rings",
"value": 23,
"unit": "ms"
},
{
"name": "group-theory.trivial-concrete-groups",
"value": 23,
"unit": "ms"
},
{
"name": "foundation.partial-functions",
"value": 23,
"unit": "ms"
},
{
"name": "foundation.lawveres-fixed-point-theorem",
"value": 23,
"unit": "ms"
},
{
"name": "group-theory.products-of-elements-monoids",
"value": 23,
"unit": "ms"
},
{
"name": "linear-algebra.diagonal-matrices-on-rings",
"value": 23,
"unit": "ms"
},
{
"name": "group-theory.monomorphisms-concrete-groups",
"value": 23,
"unit": "ms"
},
{
"name": "order-theory.well-founded-orders",
"value": 23,
"unit": "ms"
},
{
"name": "foundation.morphisms-twisted-arrows",
"value": 22,
"unit": "ms"
},
{
"name": "group-theory.subsets-abelian-groups",
"value": 22,
"unit": "ms"
},
{
"name": "univalent-combinatorics.orientations-cubes",
"value": 22,
"unit": "ms"
},
{
"name": "higher-group-theory.conjugation",
"value": 22,
"unit": "ms"
},
{
"name": "ring-theory.radical-ideals-rings",
"value": 22,
"unit": "ms"
},
{
"name": "structured-types.pointed-unit-type",
"value": 22,
"unit": "ms"
},
{
"name": "group-theory.function-semigroups",
"value": 22,
"unit": "ms"
},
{
"name": "foundation-core.commuting-squares-of-homotopies",
"value": 22,
"unit": "ms"
},
{
"name": "foundation.composite-maps-in-inverse-sequential-diagrams",
"value": 22,
"unit": "ms"
},
{
"name": "univalent-combinatorics.steiner-systems",
"value": 22,
"unit": "ms"
},
{
"name": "structured-types.pointed-dependent-functions",
"value": 22,
"unit": "ms"
},
{
"name": "foundation.cospans",
"value": 22,
"unit": "ms"
},
{
"name": "trees.lower-types-w-types",
"value": 22,
"unit": "ms"
},
{
"name": "species.precategory-of-finite-species",
"value": 22,
"unit": "ms"
},
{
"name": "species.cartesian-products-species-of-types",
"value": 22,
"unit": "ms"
},
{
"name": "group-theory.precategory-of-semigroups",
"value": 22,
"unit": "ms"
},
{
"name": "elementary-number-theory.binomial-coefficients",
"value": 21,
"unit": "ms"
},
{
"name": "foundation.double-negation-modality",
"value": 21,
"unit": "ms"
},
{
"name": "graph-theory.eulerian-circuits-undirected-graphs",
"value": 21,
"unit": "ms"
},
{
"name": "group-theory.concrete-monoids",
"value": 21,
"unit": "ms"
},
{
"name": "order-theory.coverings-locales",
"value": 21,
"unit": "ms"
},
{
"name": "foundation.standard-apartness-relations",
"value": 21,
"unit": "ms"
},
{
"name": "elementary-number-theory.group-of-integers",
"value": 21,
"unit": "ms"
},
{
"name": "foundation.noncontractible-types",
"value": 21,
"unit": "ms"
},
{
"name": "graph-theory.vertex-covers",
"value": 21,
"unit": "ms"
},
{
"name": "category-theory.essential-fibers-of-functors-precategories",
"value": 21,
"unit": "ms"
},
{
"name": "foundation.hilberts-epsilon-operators",
"value": 21,
"unit": "ms"
},
{
"name": "univalent-combinatorics.small-types",
"value": 21,
"unit": "ms"
},
{
"name": "group-theory.subsets-groups",
"value": 21,
"unit": "ms"
},
{
"name": "foundation.multivariable-sections",
"value": 21,
"unit": "ms"
},
{
"name": "foundation.effective-maps-equivalence-relations",
"value": 21,
"unit": "ms"
},
{
"name": "ring-theory.opposite-rings",
"value": 21,
"unit": "ms"
},
{
"name": "foundation-core.endomorphisms",
"value": 21,
"unit": "ms"
},
{
"name": "foundation.cartesian-product-types",
"value": 21,
"unit": "ms"
},
{
"name": "univalent-combinatorics.quotients-finite-types",
"value": 21,
"unit": "ms"
},
{
"name": "elementary-number-theory.inequality-integer-fractions",
"value": 21,
"unit": "ms"
},
{
"name": "universal-algebra.models-of-signatures",
"value": 20,
"unit": "ms"
},
{
"name": "group-theory.orbit-stabilizer-theorem-concrete-groups",
"value": 20,
"unit": "ms"
},
{
"name": "group-theory.elements-of-finite-order-groups",
"value": 20,
"unit": "ms"
},
{
"name": "elementary-number-theory.jacobi-symbol",
"value": 20,
"unit": "ms"
},
{
"name": "foundation.dependent-binary-homotopies",
"value": 20,
"unit": "ms"
},
{
"name": "foundation.kernel-span-diagrams-of-maps",
"value": 20,
"unit": "ms"
},
{
"name": "group-theory.central-elements-monoids",
"value": 20,
"unit": "ms"
},
{
"name": "higher-group-theory.trivial-higher-groups",
"value": 20,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.spheres",
"value": 20,
"unit": "ms"
},
{
"name": "higher-group-theory.cyclic-higher-groups",
"value": 20,
"unit": "ms"
},
{
"name": "graph-theory.mere-equivalences-undirected-graphs",
"value": 20,
"unit": "ms"
},
{
"name": "group-theory.shriek-concrete-group-actions",
"value": 20,
"unit": "ms"
},
{
"name": "elementary-number-theory.ordinal-induction-natural-numbers",
"value": 20,
"unit": "ms"
},
{
"name": "order-theory.commuting-squares-of-order-preserving-maps-large-posets",
"value": 20,
"unit": "ms"
},
{
"name": "group-theory.perfect-subgroups",
"value": 20,
"unit": "ms"
},
{
"name": "graph-theory.trails-directed-graphs",
"value": 20,
"unit": "ms"
},
{
"name": "structured-types.sets-equipped-with-automorphisms",
"value": 19,
"unit": "ms"
},
{
"name": "trees.empty-multisets",
"value": 19,
"unit": "ms"
},
{
"name": "foundation.dependent-function-types",
"value": 19,
"unit": "ms"
},
{
"name": "foundation.morphisms-cospans",
"value": 19,
"unit": "ms"
},
{
"name": "foundation.global-choice",
"value": 19,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.cd-structures",
"value": 19,
"unit": "ms"
},
{
"name": "group-theory.exponents-groups",
"value": 19,
"unit": "ms"
},
{
"name": "foundation.separated-types",
"value": 18,
"unit": "ms"
},
{
"name": "elementary-number-theory.collatz-bijection",
"value": 18,
"unit": "ms"
},
{
"name": "foundation.lesser-limited-principle-of-omniscience",
"value": 18,
"unit": "ms"
},
{
"name": "order-theory.directed-complete-posets",
"value": 18,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.maps-of-prespectra",
"value": 18,
"unit": "ms"
},
{
"name": "group-theory.opposite-semigroups",
"value": 18,
"unit": "ms"
},
{
"name": "species.equivalences-species-of-types",
"value": 18,
"unit": "ms"
},
{
"name": "order-theory.lower-sets-large-posets",
"value": 18,
"unit": "ms"
},
{
"name": "species.unlabeled-structures-species",
"value": 18,
"unit": "ms"
},
{
"name": "foundation.automorphisms",
"value": 18,
"unit": "ms"
},
{
"name": "univalent-combinatorics.involution-standard-finite-types",
"value": 18,
"unit": "ms"
},
{
"name": "trees.submultisets",
"value": 18,
"unit": "ms"
},
{
"name": "category-theory.equivalences-of-large-precategories",
"value": 18,
"unit": "ms"
},
{
"name": "foundation.law-of-excluded-middle",
"value": 18,
"unit": "ms"
},
{
"name": "univalent-combinatorics.main-classes-of-latin-squares",
"value": 18,
"unit": "ms"
},
{
"name": "group-theory.commuting-squares-of-group-homomorphisms",
"value": 18,
"unit": "ms"
},
{
"name": "graph-theory.voltage-graphs",
"value": 18,
"unit": "ms"
},
{
"name": "species",
"value": 18,
"unit": "ms"
},
{
"name": "order-theory.top-elements-preorders",
"value": 17,
"unit": "ms"
},
{
"name": "reflection.boolean-reflection",
"value": 17,
"unit": "ms"
},
{
"name": "finite-algebra",
"value": 17,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.suspension-prespectra",
"value": 17,
"unit": "ms"
},
{
"name": "elementary-number-theory.relatively-prime-integers",
"value": 17,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.identity-modality",
"value": 17,
"unit": "ms"
},
{
"name": "foundation.dependent-epimorphisms-with-respect-to-truncated-types",
"value": 17,
"unit": "ms"
},
{
"name": "structured-types.types-equipped-with-automorphisms",
"value": 17,
"unit": "ms"
},
{
"name": "species.species-of-types",
"value": 17,
"unit": "ms"
},
{
"name": "elementary-number-theory.hardy-ramanujan-number",
"value": 17,
"unit": "ms"
},
{
"name": "finite-group-theory.alternating-groups",
"value": 17,
"unit": "ms"
},
{
"name": "elementary-number-theory.powers-integers",
"value": 17,
"unit": "ms"
},
{
"name": "graph-theory.regular-undirected-graphs",
"value": 17,
"unit": "ms"
},
{
"name": "group-theory.concrete-group-actions",
"value": 17,
"unit": "ms"
},
{
"name": "group-theory.mere-equivalences-group-actions",
"value": 17,
"unit": "ms"
},
{
"name": "foundation.replacement",
"value": 17,
"unit": "ms"
},
{
"name": "foundation.discrete-reflexive-relations",
"value": 17,
"unit": "ms"
},
{
"name": "foundation.weakly-constant-maps",
"value": 17,
"unit": "ms"
},
{
"name": "group-theory.furstenberg-groups",
"value": 17,
"unit": "ms"
},
{
"name": "organic-chemistry.alkenes",
"value": 17,
"unit": "ms"
},
{
"name": "order-theory.locally-finite-posets",
"value": 17,
"unit": "ms"
},
{
"name": "higher-group-theory.higher-group-actions",
"value": 17,
"unit": "ms"
},
{
"name": "category-theory.commuting-squares-of-morphisms-in-large-precategories",
"value": 17,
"unit": "ms"
},
{
"name": "order-theory.top-elements-large-posets",
"value": 16,
"unit": "ms"
},
{
"name": "foundation.dubuc-penon-compact-types",
"value": 16,
"unit": "ms"
},
{
"name": "modal-type-theory.sharp-codiscrete-maps",
"value": 16,
"unit": "ms"
},
{
"name": "ring-theory.free-rings-with-one-generator",
"value": 16,
"unit": "ms"
},
{
"name": "structured-types.wild-semigroups",
"value": 16,
"unit": "ms"
},
{
"name": "elementary-number-theory.commutative-semiring-of-natural-numbers",
"value": 16,
"unit": "ms"
},
{
"name": "foundation.product-decompositions",
"value": 16,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.raise-modalities",
"value": 16,
"unit": "ms"
},
{
"name": "order-theory.bottom-elements-preorders",
"value": 16,
"unit": "ms"
},
{
"name": "order-theory.precategory-of-total-orders",
"value": 16,
"unit": "ms"
},
{
"name": "trees.multisets",
"value": 16,
"unit": "ms"
},
{
"name": "online-encyclopedia-of-integer-sequences.oeis",
"value": 16,
"unit": "ms"
},
{
"name": "univalent-combinatorics.finite-connected-components",
"value": 16,
"unit": "ms"
},
{
"name": "order-theory.precategory-of-decidable-total-orders",
"value": 16,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.mere-spheres",
"value": 16,
"unit": "ms"
},
{
"name": "elementary-number-theory.inequality-rational-numbers",
"value": 16,
"unit": "ms"
},
{
"name": "reflection.fixity",
"value": 15,
"unit": "ms"
},
{
"name": "elementary-number-theory.multiplication-rational-numbers",
"value": 15,
"unit": "ms"
},
{
"name": "reflection.metavariables",
"value": 15,
"unit": "ms"
},
{
"name": "structured-types.involutive-types",
"value": 15,
"unit": "ms"
},
{
"name": "foundation.set-presented-types",
"value": 15,
"unit": "ms"
},
{
"name": "type-theories",
"value": 15,
"unit": "ms"
},
{
"name": "foundation.families-of-equivalences",
"value": 15,
"unit": "ms"
},
{
"name": "foundation.sigma-closed-subuniverses",
"value": 15,
"unit": "ms"
},
{
"name": "order-theory.precategory-of-inhabited-finite-total-orders",
"value": 15,
"unit": "ms"
},
{
"name": "order-theory.ideals-preorders",
"value": 15,
"unit": "ms"
},
{
"name": "finite-group-theory.alternating-concrete-groups",
"value": 15,
"unit": "ms"
},
{
"name": "lists",
"value": 15,
"unit": "ms"
},
{
"name": "group-theory.principal-group-actions",
"value": 15,
"unit": "ms"
},
{
"name": "order-theory.precategory-of-finite-posets",
"value": 15,
"unit": "ms"
},
{
"name": "ring-theory.characteristics-rings",
"value": 15,
"unit": "ms"
},
{
"name": "elementary-number-theory.catalan-numbers",
"value": 15,
"unit": "ms"
},
{
"name": "order-theory.precategory-of-finite-total-orders",
"value": 15,
"unit": "ms"
},
{
"name": "elementary-number-theory.half-integers",
"value": 15,
"unit": "ms"
},
{
"name": "foundation.operations-spans-families-of-types",
"value": 15,
"unit": "ms"
},
{
"name": "structured-types.morphisms-magmas",
"value": 15,
"unit": "ms"
},
{
"name": "foundation.limited-principle-of-omniscience",
"value": 15,
"unit": "ms"
},
{
"name": "group-theory.e8-lattice",
"value": 15,
"unit": "ms"
},
{
"name": "organic-chemistry.alkynes",
"value": 15,
"unit": "ms"
},
{
"name": "group-theory.sheargroups",
"value": 15,
"unit": "ms"
},
{
"name": "elementary-number-theory.decidable-total-order-standard-finite-types",
"value": 15,
"unit": "ms"
},
{
"name": "foundation.preidempotent-maps",
"value": 15,
"unit": "ms"
},
{
"name": "category-theory.equivalences-of-categories",
"value": 15,
"unit": "ms"
},
{
"name": "trees.coalgebra-of-enriched-directed-trees",
"value": 15,
"unit": "ms"
},
{
"name": "elementary-number-theory.collatz-conjecture",
"value": 14,
"unit": "ms"
},
{
"name": "elementary-number-theory.nonzero-natural-numbers",
"value": 14,
"unit": "ms"
},
{
"name": "lists.predicates-on-lists",
"value": 14,
"unit": "ms"
},
{
"name": "foundation.uniqueness-truncation",
"value": 14,
"unit": "ms"
},
{
"name": "set-theory.infinite-sets",
"value": 14,
"unit": "ms"
},
{
"name": "species.dirichlet-series-species-of-finite-inhabited-types",
"value": 14,
"unit": "ms"
},
{
"name": "elementary-number-theory.lower-bounds-natural-numbers",
"value": 14,
"unit": "ms"
},
{
"name": "foundation.permutations-spans-families-of-types",
"value": 14,
"unit": "ms"
},
{
"name": "group-theory.exponents-abelian-groups",
"value": 14,
"unit": "ms"
},
{
"name": "species.dirichlet-series-species-of-types-in-subuniverses",
"value": 14,
"unit": "ms"
},
{
"name": "foundation.weak-limited-principle-of-omniscience",
"value": 14,
"unit": "ms"
},
{
"name": "trees.coalgebras-polynomial-endofunctors",
"value": 14,
"unit": "ms"
},
{
"name": "graph-theory.connected-undirected-graphs",
"value": 14,
"unit": "ms"
},
{
"name": "structured-types.fibers-of-pointed-maps",
"value": 14,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.infinite-complex-projective-space",
"value": 14,
"unit": "ms"
},
{
"name": "order-theory.interval-subposets",
"value": 14,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.sequential-diagrams",
"value": 14,
"unit": "ms"
},
{
"name": "category-theory.commuting-squares-of-morphisms-in-set-magmoids",
"value": 14,
"unit": "ms"
},
{
"name": "foundation-core.precomposition-dependent-functions",
"value": 14,
"unit": "ms"
},
{
"name": "foundation.identity-truncated-types",
"value": 14,
"unit": "ms"
},
{
"name": "foundation.constant-span-diagrams",
"value": 14,
"unit": "ms"
},
{
"name": "order-theory.upper-sets-large-posets",
"value": 14,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.double-lifts-families-of-elements",
"value": 14,
"unit": "ms"
},
{
"name": "foundation.principle-of-omniscience",
"value": 14,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.morphisms-descent-data-circle",
"value": 14,
"unit": "ms"
},
{
"name": "group-theory.normal-subgroups-concrete-groups",
"value": 14,
"unit": "ms"
},
{
"name": "group-theory.perfect-cores",
"value": 14,
"unit": "ms"
},
{
"name": "foundation.truncation-modalities",
"value": 14,
"unit": "ms"
},
{
"name": "elementary-number-theory.goldbach-conjecture",
"value": 14,
"unit": "ms"
},
{
"name": "foundation.multivariable-decidable-relations",
"value": 13,
"unit": "ms"
},
{
"name": "modal-type-theory.crisp-identity-types",
"value": 13,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.locally-small-modal-operators",
"value": 13,
"unit": "ms"
},
{
"name": "trees.planar-binary-trees",
"value": 13,
"unit": "ms"
},
{
"name": "graph-theory.orientations-undirected-graphs",
"value": 13,
"unit": "ms"
},
{
"name": "group-theory.perfect-groups",
"value": 13,
"unit": "ms"
},
{
"name": "elementary-number-theory.products-of-natural-numbers",
"value": 13,
"unit": "ms"
},
{
"name": "elementary-number-theory.eulers-totient-function",
"value": 13,
"unit": "ms"
},
{
"name": "foundation.total-partial-functions",
"value": 13,
"unit": "ms"
},
{
"name": "foundation.spans-families-of-types",
"value": 13,
"unit": "ms"
},
{
"name": "set-theory.uncountable-sets",
"value": 13,
"unit": "ms"
},
{
"name": "foundation.span-diagrams-families-of-types",
"value": 13,
"unit": "ms"
},
{
"name": "foundation.binary-equivalences-unordered-pairs-of-types",
"value": 13,
"unit": "ms"
},
{
"name": "group-theory.stabilizer-groups",
"value": 13,
"unit": "ms"
},
{
"name": "foundation.partial-elements",
"value": 13,
"unit": "ms"
},
{
"name": "foundation.bands",
"value": 13,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.sequentially-compact-types",
"value": 13,
"unit": "ms"
},
{
"name": "linear-algebra.functoriality-matrices",
"value": 13,
"unit": "ms"
},
{
"name": "ring-theory.generating-elements-rings",
"value": 13,
"unit": "ms"
},
{
"name": "foundation.dependent-epimorphisms",
"value": 13,
"unit": "ms"
},
{
"name": "group-theory.orbits-group-actions",
"value": 13,
"unit": "ms"
},
{
"name": "species.unit-cauchy-composition-species-of-types-in-subuniverses",
"value": 13,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.zero-modality",
"value": 13,
"unit": "ms"
},
{
"name": "primitives.floats",
"value": 13,
"unit": "ms"
},
{
"name": "trees.algebras-polynomial-endofunctors",
"value": 12,
"unit": "ms"
},
{
"name": "reflection.names",
"value": 12,
"unit": "ms"
},
{
"name": "foundation.multivariable-relations",
"value": 12,
"unit": "ms"
},
{
"name": "reflection.literals",
"value": 12,
"unit": "ms"
},
{
"name": "higher-group-theory.symmetric-higher-groups",
"value": 12,
"unit": "ms"
},
{
"name": "linear-algebra",
"value": 12,
"unit": "ms"
},
{
"name": "structured-types.pointed-sections",
"value": 12,
"unit": "ms"
},
{
"name": "group-theory.orbits-concrete-group-actions",
"value": 12,
"unit": "ms"
},
{
"name": "trees.coalgebra-of-directed-trees",
"value": 12,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.separated-types",
"value": 12,
"unit": "ms"
},
{
"name": "foundation.products-binary-relations",
"value": 12,
"unit": "ms"
},
{
"name": "ring-theory.division-rings",
"value": 12,
"unit": "ms"
},
{
"name": "modal-type-theory.crisp-law-of-excluded-middle",
"value": 11,
"unit": "ms"
},
{
"name": "trees.rooted-quasitrees",
"value": 11,
"unit": "ms"
},
{
"name": "set-theory.cantor-space",
"value": 11,
"unit": "ms"
},
{
"name": "structured-types.constant-maps-pointed-types",
"value": 11,
"unit": "ms"
},
{
"name": "structured-types.cartesian-products-types-equipped-with-endomorphisms",
"value": 11,
"unit": "ms"
},
{
"name": "modal-type-theory.flat-dependent-function-types",
"value": 11,
"unit": "ms"
},
{
"name": "foundation.0-images-of-maps",
"value": 11,
"unit": "ms"
},
{
"name": "group-theory.generating-sets-groups",
"value": 11,
"unit": "ms"
},
{
"name": "elementary-number-theory.upper-bounds-natural-numbers",
"value": 11,
"unit": "ms"
},
{
"name": "species.cauchy-products-species-of-types",
"value": 11,
"unit": "ms"
},
{
"name": "elementary-number-theory.mersenne-primes",
"value": 11,
"unit": "ms"
},
{
"name": "foundation.partial-sequences",
"value": 11,
"unit": "ms"
},
{
"name": "elementary-number-theory.monoid-of-natural-numbers-with-addition",
"value": 11,
"unit": "ms"
},
{
"name": "structured-types.contractible-pointed-types",
"value": 11,
"unit": "ms"
},
{
"name": "foundation-core.discrete-types",
"value": 11,
"unit": "ms"
},
{
"name": "graph-theory.hypergraphs",
"value": 11,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.cellular-maps",
"value": 10,
"unit": "ms"
},
{
"name": "primitives.strings",
"value": 10,
"unit": "ms"
},
{
"name": "foundation.transposition-span-diagrams",
"value": 10,
"unit": "ms"
},
{
"name": "foundation.cospan-diagrams",
"value": 10,
"unit": "ms"
},
{
"name": "reflection",
"value": 10,
"unit": "ms"
},
{
"name": "commutative-algebra.boolean-rings",
"value": 10,
"unit": "ms"
},
{
"name": "higher-group-theory",
"value": 10,
"unit": "ms"
},
{
"name": "synthetic-homotopy-theory.join-powers-of-types",
"value": 10,
"unit": "ms"
},
{
"name": "foundation.reflexive-relations",
"value": 10,
"unit": "ms"
},
{
"name": "elementary-number-theory.cubes-natural-numbers",
"value": 10,
"unit": "ms"
},
{
"name": "univalent-combinatorics.maybe",
"value": 10,
"unit": "ms"
},
{
"name": "category-theory.commuting-squares-of-morphisms-in-precategories",
"value": 10,
"unit": "ms"
},
{
"name": "foundation.strongly-extensional-maps",
"value": 10,
"unit": "ms"
},
{
"name": "group-theory.unordered-tuples-of-elements-commutative-monoids",
"value": 10,
"unit": "ms"
},
{
"name": "structured-types.central-h-spaces",
"value": 10,
"unit": "ms"
},
{
"name": "group-theory.dihedral-groups",
"value": 10,
"unit": "ms"
},
{
"name": "foundation.terminal-spans-families-of-types",
"value": 10,
"unit": "ms"
},
{
"name": "structured-types.types-equipped-with-endomorphisms",
"value": 10,
"unit": "ms"
},
{
"name": "elementary-number-theory.multiplicative-monoid-of-natural-numbers",
"value": 10,
"unit": "ms"
},
{
"name": "species.dirichlet-products-species-of-types",
"value": 10,
"unit": "ms"
},
{
"name": "foundation.propositional-resizing",
"value": 10,
"unit": "ms"
},
{
"name": "foundation.injective-maps",
"value": 10,
"unit": "ms"
},
{
"name": "species.cycle-index-series-species-of-types",
"value": 10,
"unit": "ms"
},
{
"name": "structured-types.iterated-pointed-cartesian-product-types",
"value": 10,
"unit": "ms"
},
{
"name": "graph-theory.directed-graph-structures-on-standard-finite-sets",
"value": 10,
"unit": "ms"
},
{
"name": "structured-types.symmetric-h-spaces",
"value": 10,
"unit": "ms"
},
{
"name": "foundation.2-types",
"value": 10,
"unit": "ms"
},
{
"name": "orthogonal-factorization-systems.sigma-closed-modalities",
"value": 10,
"unit": "ms"
}
] |
Sure 👍 |
Use hosting storage instead of GitHub cache
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM, though the job will fail until we set the proper NETLIFY_SITE_ID
and NETLIFY_AUTH_TOKEN
deployment secrets
make
-hook for profilingI'm not yet completely sure I set up the workflow correctly.Also note that 4GB memory is not enough for this profiler to work (#985).Resolves #1030.
Example output