Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Level-universe compatibility patch #862

Merged
merged 1 commit into from
Oct 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/category-theory/functors-large-categories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ There is an identity functor on any large category.
id-functor-Large-Category :
{αC : Level Level} {βC : Level Level Level}
(C : Large-Category αC βC)
functor-Large-Category id C C
functor-Large-Category (λ l l) C C
id-functor-Large-Category C =
id-functor-Large-Precategory (large-precategory-Large-Category C)
```
Expand Down
4 changes: 2 additions & 2 deletions src/category-theory/functors-large-precategories.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ module _
id-functor-Large-Precategory :
{αC : Level Level} {βC : Level Level Level}
(C : Large-Precategory αC βC)
functor-Large-Precategory id C C
functor-Large-Precategory (λ l l) C C
obj-functor-Large-Precategory
( id-functor-Large-Precategory C) =
id
Expand Down Expand Up @@ -152,7 +152,7 @@ module _
( preserves-id-functor-Large-Precategory G)

comp-functor-Large-Precategory :
functor-Large-Precategory (γG ∘ γF) C E
functor-Large-Precategory (λ l γG (γF l)) C E
obj-functor-Large-Precategory
comp-functor-Large-Precategory =
obj-comp-functor-Large-Precategory
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ module _

```agda
group-of-units-commutative-ring-functor-Large-Precategory :
functor-Large-Precategory id
functor-Large-Precategory (λ l l)
( Commutative-Ring-Large-Precategory)
( Ab-Large-Precategory)
obj-functor-Large-Precategory
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,8 @@ module _
preserves-order-ideal-radical-ideal-Commutative-Ring I J H = H

ideal-radical-ideal-hom-large-poset-Commutative-Ring :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( radical-ideal-Commutative-Ring-Large-Poset A)
( ideal-Commutative-Ring-Large-Poset A)
map-hom-Large-Preorder
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,8 @@ module _
( H))

radical-of-ideal-hom-large-poset-Commutative-Ring :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( ideal-Commutative-Ring-Large-Poset A)
( radical-ideal-Commutative-Ring-Large-Poset A)
map-hom-Large-Preorder
Expand Down Expand Up @@ -276,7 +277,7 @@ module _
is-radical-of-ideal-radical-of-ideal-Commutative-Ring A I J

radical-of-ideal-galois-connection-Commutative-Ring :
galois-connection-Large-Poset id id
galois-connection-Large-Poset (λ l l) (λ l l)
( ideal-Commutative-Ring-Large-Poset A)
( radical-ideal-Commutative-Ring-Large-Poset A)
lower-adjoint-galois-connection-Large-Poset
Expand Down
8 changes: 5 additions & 3 deletions src/foundation-core/functoriality-function-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -290,15 +290,17 @@ is-equiv-is-equiv-precomp-Prop :
({l : Level} (R : Prop l) is-equiv (precomp f (type-Prop R)))
is-equiv f
is-equiv-is-equiv-precomp-Prop P Q f H =
is-equiv-is-equiv-precomp-subuniverse id (λ l is-prop) P Q f (λ l H {l})
is-equiv-is-equiv-precomp-subuniverse
( λ l l) (λ l is-prop) P Q f (λ l H {l})

is-equiv-is-equiv-precomp-Set :
{l1 l2 : Level} (A : Set l1) (B : Set l2)
(f : type-Set A type-Set B)
({l : Level} (C : Set l) is-equiv (precomp f (type-Set C)))
is-equiv f
is-equiv-is-equiv-precomp-Set A B f H =
is-equiv-is-equiv-precomp-subuniverse id (λ l is-set) A B f (λ l H {l})
is-equiv-is-equiv-precomp-subuniverse
( λ l l) (λ l is-set) A B f (λ l H {l})

is-equiv-is-equiv-precomp-Truncated-Type :
{l1 l2 : Level} (k : 𝕋)
Expand All @@ -307,7 +309,7 @@ is-equiv-is-equiv-precomp-Truncated-Type :
({l : Level} (C : Truncated-Type l k) is-equiv (precomp f (pr1 C)))
is-equiv f
is-equiv-is-equiv-precomp-Truncated-Type k A B f H =
is-equiv-is-equiv-precomp-subuniverse id (λ l is-trunc k) A B f
is-equiv-is-equiv-precomp-subuniverse (λ l l) (λ l is-trunc k) A B f
( λ l H {l})
```

Expand Down
2 changes: 1 addition & 1 deletion src/foundation/connected-components-universes.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,7 @@ abstract
is-contr-component-UU-Level-empty lzero
```

### The connected components of universes are 0 connected
### The connected components of universes are `0`-connected

```agda
abstract
Expand Down
3 changes: 1 addition & 2 deletions src/foundation/subuniverses.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -143,8 +143,7 @@ module _
: Level Level) (P : global-subuniverse α)
where

is-in-global-subuniverse :
{l : Level} UU l UU (α l)
is-in-global-subuniverse : {l : Level} UU l UU (α l)
is-in-global-subuniverse X =
is-in-subuniverse (subuniverse-global-subuniverse P _) X
```
Expand Down
4 changes: 3 additions & 1 deletion src/group-theory/cores-monoids.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -226,7 +226,9 @@ module _

```agda
core-monoid-functor-Large-Precategory :
functor-Large-Precategory id Monoid-Large-Precategory Group-Large-Precategory
functor-Large-Precategory (λ l l)
Monoid-Large-Precategory
Group-Large-Precategory
obj-functor-Large-Precategory
core-monoid-functor-Large-Precategory =
core-Monoid
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/normal-closures-subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -252,7 +252,7 @@ module _
normal-closure-Galois-Connection :
galois-connection-Large-Poset
( λ l2 l1 ⊔ l2)
( id)
( λ l l)
( Subgroup-Large-Poset G)
( Normal-Subgroup-Large-Poset G)
normal-closure-Galois-Connection =
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/normal-cores-subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ module _

normal-core-subgroup-Galois-Connection :
galois-connection-Large-Poset
( id)
( λ l l)
( λ l2 l1 ⊔ l2)
( Normal-Subgroup-Large-Poset G)
( Subgroup-Large-Poset G)
Expand Down
3 changes: 2 additions & 1 deletion src/group-theory/normal-subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -382,7 +382,8 @@ preserves-order-subgroup-Normal-Subgroup G N M = id

subgroup-normal-subgroup-hom-Large-Poset :
{l1 : Level} (G : Group l1)
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( Normal-Subgroup-Large-Poset G)
( Subgroup-Large-Poset G)
subgroup-normal-subgroup-hom-Large-Poset G =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -373,7 +373,7 @@ module _
subgroup-subset-galois-connection-Group :
galois-connection-Large-Poset
( λ l2 l1 ⊔ l2)
( id)
( λ l l)
( powerset-Large-Poset (type-Group G))
( Subgroup-Large-Poset G)
lower-adjoint-galois-connection-Large-Poset
Expand Down
2 changes: 1 addition & 1 deletion src/group-theory/subgroups.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -490,7 +490,7 @@ preserves-order-subset-Subgroup G H K = id
subset-subgroup-hom-large-poset-Group :
{l1 : Level} (G : Group l1)
hom-set-Large-Poset
( id)
( λ l l)
( Subgroup-Large-Poset G)
( powerset-Large-Poset (type-Group G))
map-hom-Large-Preorder
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ module _
preserves-comp-subst-Abstract-Group-Action X Y Z g f = refl

subst-Abstract-Group-Action :
functor-Large-Precategory id
functor-Large-Precategory (λ l l)
( Abstract-Group-Action-Large-Precategory H)
( Abstract-Group-Action-Large-Precategory G)
obj-functor-Large-Precategory subst-Abstract-Group-Action =
Expand Down
3 changes: 2 additions & 1 deletion src/order-theory/closure-operators-large-locales.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,8 @@ module _
where

hom-large-poset-closure-operator-Large-Locale :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( large-poset-Large-Locale L)
( large-poset-Large-Locale L)
hom-large-poset-closure-operator-Large-Locale =
Expand Down
2 changes: 1 addition & 1 deletion src/order-theory/closure-operators-large-posets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ module _
where
field
hom-closure-operator-Large-Poset :
hom-set-Large-Poset id P P
hom-set-Large-Poset (λ l l) P P
is-inflationary-closure-operator-Large-Poset :
{l1 : Level} (x : type-Large-Poset P l1)
leq-Large-Poset P x
Expand Down
4 changes: 2 additions & 2 deletions src/order-theory/galois-connections-large-posets.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ open import order-theory.order-preserving-maps-large-posets
A **galois connection** between [large posets](order-theory.large-posets.md) `P`
and `Q` consists of
[order preserving maps](order-theory.order-preserving-maps-large-posets.md)
`f : hom-set-Large-Poset id P Q` and `hom-set-Large-Poset id Q P` such that the
adjoint relation
`f : hom-set-Large-Poset (λ l l) P Q` and `hom-set-Large-Poset id Q P` such
that the adjoint relation

```text
(f x ≤ y) ↔ (x ≤ g y)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,8 @@ module _
where
field
hom-large-poset-hom-Large-Meet-Semilattice :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( large-poset-Large-Meet-Semilattice K)
( large-poset-Large-Meet-Semilattice L)
preserves-meets-hom-Large-Meet-Semilattice :
Expand Down
6 changes: 4 additions & 2 deletions src/order-theory/homomorphisms-large-suplattices.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@ module _
where

preserves-sup-hom-Large-Poset :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( large-poset-Large-Suplattice K)
( large-poset-Large-Suplattice L)
UUω
Expand All @@ -59,7 +60,8 @@ module _
where
field
hom-large-poset-hom-Large-Suplattice :
hom-set-Large-Poset id
hom-set-Large-Poset
( λ l l)
( large-poset-Large-Suplattice K)
( large-poset-Large-Suplattice L)
preserves-sup-hom-Large-Suplattice :
Expand Down
4 changes: 2 additions & 2 deletions src/order-theory/nuclei-large-locales.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,8 @@ open import order-theory.least-upper-bounds-large-posets
## Idea

A **nucleus** on a [large locale](order-theory.large-locales.md) `L` is an order
preserving map `j : hom-set-Large-Poset id L L` such that `j` preserves meets
and is inflationary and idempotent.
preserving map `j : hom-set-Large-Poset (λ l l) L L` such that `j` preserves
meets and is inflationary and idempotent.

## Definitions

Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/ideals-generated-by-subsets-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -385,7 +385,7 @@ module _

ideal-subset-galois-connection-Ring :
galois-connection-Large-Poset
( _⊔_ l1) id
( _⊔_ l1) (λ l l)
( powerset-Large-Poset (type-Ring A))
( ideal-Ring-Large-Poset A)
lower-adjoint-galois-connection-Large-Poset
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -341,7 +341,7 @@ module _

left-ideal-subset-galois-connection-Ring :
galois-connection-Large-Poset
( _⊔_ l1) id
( l1 ⊔_) (λ l l)
( powerset-Large-Poset (type-Ring A))
( left-ideal-Ring-Large-Poset A)
lower-adjoint-galois-connection-Large-Poset
Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/poset-of-ideals-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ module _

subset-ideal-hom-large-poset-Ring :
hom-set-Large-Poset
( id)
( λ l l)
( ideal-Ring-Large-Poset R)
( powerset-Large-Poset (type-Ring R))
map-hom-Large-Preorder subset-ideal-hom-large-poset-Ring =
Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/poset-of-left-ideals-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -162,7 +162,7 @@ module _

subset-left-ideal-hom-large-poset-Ring :
hom-set-Large-Poset
( id)
( λ l l)
( left-ideal-Ring-Large-Poset R)
( powerset-Large-Poset (type-Ring R))
map-hom-Large-Preorder subset-left-ideal-hom-large-poset-Ring =
Expand Down
2 changes: 1 addition & 1 deletion src/ring-theory/poset-of-right-ideals-rings.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ module _

subset-right-ideal-hom-large-poset-Ring :
hom-set-Large-Poset
( id)
( λ l l)
( right-ideal-Ring-Large-Poset R)
( powerset-Large-Poset (type-Ring R))
map-hom-Large-Preorder subset-right-ideal-hom-large-poset-Ring =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -339,7 +339,7 @@ module _

right-ideal-subset-galois-connection-Ring :
galois-connection-Large-Poset
( _⊔_ l1) id
( l1 ⊔_) (λ l l)
( powerset-Large-Poset (type-Ring A))
( right-ideal-Ring-Large-Poset A)
lower-adjoint-galois-connection-Large-Poset
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ coefficients of the composite of the Cauchy series of `S` and `T`.
module _
{l1 l2 : Level}
(P : subuniverse l1 l2)
(Q : global-subuniverse id)
(Q : global-subuniverse (λ l l))
where

type-cauchy-composition-species-subuniverse :
Expand All @@ -83,13 +83,13 @@ module _
( S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
( T : species-subuniverse P (subuniverse-global-subuniverse Q l4))
( X : type-subuniverse P)
is-in-global-subuniverse id Q
is-in-global-subuniverse (λ l l) Q
( type-cauchy-composition-species-subuniverse S T X)

module _
{l1 l2 l3 l4 : Level}
(P : subuniverse l1 l2)
(Q : global-subuniverse id)
(Q : global-subuniverse (λ l l))
(C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
(C2 : is-closed-under-Σ-subuniverse P)
(S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
Expand All @@ -112,7 +112,7 @@ module _
module _
{l1 l2 l3 l4 : Level}
(P : subuniverse l1 l2)
(Q : global-subuniverse id)
(Q : global-subuniverse (λ l l))
(C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
(C2 : is-closed-under-Σ-subuniverse P)
(S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
Expand Down Expand Up @@ -185,7 +185,7 @@ module _

```agda
module _
{l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id)
{l1 l2 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse (λ l l))
( C3 : is-in-subuniverse P (raise-unit l1))
( C4 :
is-closed-under-is-contr-subuniverses P
Expand Down Expand Up @@ -249,7 +249,7 @@ module _
module _
{ l1 l2 l3 : Level}
( P : subuniverse l1 l2)
( Q : global-subuniverse id)
( Q : global-subuniverse (λ l l))
( C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
( C2 : is-closed-under-Σ-subuniverse P)
( C3 : is-in-subuniverse P (raise-unit l1))
Expand Down Expand Up @@ -366,7 +366,7 @@ module _
module _
{ l1 l2 l3 l4 l5 : Level}
( P : subuniverse l1 l2)
( Q : global-subuniverse id)
( Q : global-subuniverse (λ l l))
( C1 : is-closed-under-cauchy-composition-species-subuniverse P Q)
( C2 : is-closed-under-Σ-subuniverse P)
( S : species-subuniverse P (subuniverse-global-subuniverse Q l3))
Expand Down
Loading