Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Small formatting fixes concrete groups #897

Merged
merged 7 commits into from
Nov 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 11 additions & 12 deletions src/category-theory/groupoids.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -76,8 +76,8 @@ module _
id-hom-Groupoid = id-hom-Category category-Groupoid

comp-hom-Groupoid :
{x y z : obj-Groupoid} → hom-Groupoid y z →
hom-Groupoid x y → hom-Groupoid x z
{x y z : obj-Groupoid} →
hom-Groupoid y z → hom-Groupoid x y → hom-Groupoid x z
comp-hom-Groupoid = comp-hom-Category category-Groupoid

associative-comp-hom-Groupoid :
Expand Down Expand Up @@ -136,30 +136,29 @@ module _
fundamental-theorem-id
( is-contr-equiv'
( Σ ( Σ (type-1-Type X) (λ y → x = y))
( λ yp
Σ ( Σ (pr1 yp = x) (λ q → (q ∙ pr2 yp) = refl))
( λ ql → (pr2 yp ∙ pr1 ql) = refl)))
( λ (y , p)
Σ ( Σ (y = x) (λ q → q ∙ p = refl))
( λ (q , l) → p ∙ q = refl)))
( ( equiv-tot
( λ y →
equiv-tot
( λ p →
associative-Σ
( y = x)
( λ q → (q ∙ p) = refl)
( λ qr → (p ∙ pr1 qr) = refl)))) ∘e
( λ q → q ∙ p = refl)
( λ (q , r) → p ∙ q = refl)))) ∘e
( associative-Σ
( type-1-Type X)
( λ y → x = y)
( λ yp
Σ ( Σ (pr1 yp = x) (λ q → (q ∙ pr2 yp) = refl))
( λ ql → (pr2 yp ∙ pr1 ql) = refl))))
( λ (y , p)
Σ ( Σ (y = x) (λ q → q ∙ p = refl))
( λ (q , l) → p ∙ q = refl))))
( is-contr-iterated-Σ 2
( is-torsorial-path x ,
( x , refl) ,
( is-contr-equiv
( Σ (x = x) (λ q → q = refl))
( equiv-tot
( λ q → equiv-concat (inv right-unit) refl))
( equiv-tot (λ q → equiv-concat (inv right-unit) refl))
( is-torsorial-path' refl)) ,
( refl , refl) ,
( is-proof-irrelevant-is-prop
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -146,28 +146,28 @@ module _
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( comp-hom-Group
( loop-group-Set (raise-Fin-Set l (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( group-Concrete-Group (UU-Fin-Group l (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( hom-group-hom-Concrete-Group
( UU-Fin-Group l (n +ℕ 2))
( UU-Fin-Group (lsuc l) 2)
( cartier-delooping-sign (n +ℕ 2)))
( hom-inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l (n +ℕ 2)))
( iso-loop-group-fin-UU-Fin-Group l (n +ℕ 2))))
( hom-inv-symmetric-group-loop-group-Set (raise-Fin-Set l (n +ℕ 2))))
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l (n +ℕ 2)))
( symmetric-Group (Fin-Set (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( comp-hom-Group
( symmetric-Group (Fin-Set (n +ℕ 2)))
( symmetric-Group (Fin-Set 2))
( abstract-group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( group-Concrete-Group (UU-Fin-Group (lsuc l) 2))
( symmetric-abstract-UU-fin-group-quotient-hom
( orientation-Complete-Undirected-Graph)
( even-difference-orientation-Complete-Undirected-Graph)
Expand Down
96 changes: 48 additions & 48 deletions src/finite-group-theory/delooping-sign-homomorphism.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -1085,16 +1085,16 @@ module _
( comp-hom-Group
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( hom-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( iso-loop-group-fin-UU-Fin-Group l4 2))
( iso-loop-group-equiv-Set
Expand All @@ -1104,17 +1104,17 @@ module _
( quotient-delooping-sign-loop n))
( comp-hom-Group
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l4 2))
( hom-group-hom-Concrete-Group
( UU-Fin-Group l1 (n +ℕ 2))
( UU-Fin-Group l4 2)
( quotient-delooping-sign (n +ℕ 2)))
( hom-iso-Group
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( iso-loop-group-fin-UU-Fin-Group l1 (n +ℕ 2)))))
eq-quotient-delooping-loop-UU-Fin-Group n =
Expand Down Expand Up @@ -1298,47 +1298,47 @@ module _
( eq-is-prop
( is-prop-preserves-mul-Semigroup
( semigroup-Group (loop-group-Set (raise-Fin-Set l1 (n +ℕ 2))))
( semigroup-Group (abstract-group-Concrete-Group (UU-Fin-Group l4 2)))
( semigroup-Group (group-Concrete-Group (UU-Fin-Group l4 2)))
( pr1
( comp-hom-Group
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l4 2))
( hom-group-hom-Concrete-Group
( UU-Fin-Group l1 (n +ℕ 2))
( UU-Fin-Group l4 2)
( quotient-delooping-sign (n +ℕ 2)))
( hom-iso-Group
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( iso-loop-group-fin-UU-Fin-Group l1 (n +ℕ 2))))))))

symmetric-abstract-UU-fin-group-quotient-hom :
(n : ℕ) →
hom-Group
( symmetric-Group (Fin-Set 2))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
symmetric-abstract-UU-fin-group-quotient-hom n =
comp-hom-Group
( symmetric-Group (Fin-Set 2))
( symmetric-Group (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-hom-Group
( symmetric-Group (quotient-set-Fin (n +ℕ 2)))
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( hom-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( iso-loop-group-fin-UU-Fin-Group l4 2))
( iso-loop-group-equiv-Set
Expand All @@ -1357,28 +1357,28 @@ module _
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l1 (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-hom-Group
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l4 2))
( hom-group-hom-Concrete-Group
( UU-Fin-Group l1 (n +ℕ 2))
( UU-Fin-Group l4 2)
( quotient-delooping-sign (n +ℕ 2)))
( hom-inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( iso-loop-group-fin-UU-Fin-Group l1 (n +ℕ 2))))
( hom-inv-symmetric-group-loop-group-Set (raise-Fin-Set l1 (n +ℕ 2))))
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l1 (n +ℕ 2)))
( symmetric-Group (Fin-Set (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-hom-Group
( symmetric-Group (Fin-Set (n +ℕ 2)))
( symmetric-Group (Fin-Set 2))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( symmetric-abstract-UU-fin-group-quotient-hom n)
( sign-homomorphism
( n +ℕ 2)
Expand All @@ -1393,24 +1393,24 @@ module _
comp-hom-Group
( symmetric-Group (raise-Fin-Set l1 (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( f)
( hom-inv-symmetric-group-loop-group-Set (raise-Fin-Set l1 (n +ℕ 2))))
( inv (eq-quotient-delooping-loop-UU-Fin-Group n))) ∙
( associative-comp-hom-Group
( symmetric-Group (raise-Fin-Set l1 (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( hom-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( iso-loop-group-fin-UU-Fin-Group l4 2))
( iso-loop-group-equiv-Set
Expand All @@ -1423,16 +1423,16 @@ module _
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l1 (n +ℕ 2)))
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( hom-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( iso-loop-group-fin-UU-Fin-Group l4 2))
( iso-loop-group-equiv-Set
Expand All @@ -1446,33 +1446,33 @@ module _
( is-prop-preserves-mul-Semigroup
( semigroup-Group (symmetric-Group (raise-Fin-Set l1 (n +ℕ 2))))
( semigroup-Group
( abstract-group-Concrete-Group (UU-Fin-Group l4 2)))
( group-Concrete-Group (UU-Fin-Group l4 2)))
( pr1
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l1 (n +ℕ 2)))
( symmetric-Group (Fin-Set (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-hom-Group
( symmetric-Group (Fin-Set (n +ℕ 2)))
( symmetric-Group (Fin-Set 2))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-hom-Group
( symmetric-Group (Fin-Set 2))
( symmetric-Group (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-hom-Group
( symmetric-Group (quotient-set-Fin (n +ℕ 2)))
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( hom-iso-Group
( loop-group-Set (quotient-set-Fin (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( comp-iso-Group
( loop-group-Set ( quotient-set-Fin (n +ℕ 2)))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l4 2))
( group-Concrete-Group (UU-Fin-Group l4 2))
( inv-iso-Group
( abstract-group-Concrete-Group
( group-Concrete-Group
( UU-Fin-Group l4 2))
( loop-group-Set (raise-Set l4 (Fin-Set 2)))
( iso-loop-group-fin-UU-Fin-Group l4 2))
Expand Down Expand Up @@ -1580,28 +1580,28 @@ module _
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l1 (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group (lsuc l2) 2))
( group-Concrete-Group (UU-Fin-Group (lsuc l2) 2))
( comp-hom-Group
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group (lsuc l2) 2))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group (lsuc l2) 2))
( hom-group-hom-Concrete-Group
( UU-Fin-Group l1 (n +ℕ 2))
( UU-Fin-Group (lsuc l2) 2)
( delooping-sign (n +ℕ 2)))
( hom-inv-iso-Group
( abstract-group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( group-Concrete-Group (UU-Fin-Group l1 (n +ℕ 2)))
( loop-group-Set (raise-Fin-Set l1 (n +ℕ 2)))
( iso-loop-group-fin-UU-Fin-Group l1 (n +ℕ 2))))
( hom-inv-symmetric-group-loop-group-Set (raise-Fin-Set l1 (n +ℕ 2))))
( comp-hom-Group
( symmetric-Group (raise-Fin-Set l1 (n +ℕ 2)))
( symmetric-Group (Fin-Set (n +ℕ 2)))
( abstract-group-Concrete-Group (UU-Fin-Group (lsuc l2) 2))
( group-Concrete-Group (UU-Fin-Group (lsuc l2) 2))
( comp-hom-Group
( symmetric-Group (Fin-Set (n +ℕ 2)))
( symmetric-Group (Fin-Set 2))
( abstract-group-Concrete-Group (UU-Fin-Group (lsuc l2) 2))
( group-Concrete-Group (UU-Fin-Group (lsuc l2) 2))
( symmetric-abstract-UU-fin-group-quotient-hom
( λ n X → type-UU-Fin 2 (Q n X))
( λ n X → Id-Equivalence-Relation (set-UU-Fin 2 (Q n X)))
Expand Down
Loading
Loading