Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Characterization of acyclic types in terms of const to identity types being an equivalence #954

Merged
merged 9 commits into from
Nov 29, 2023
17 changes: 17 additions & 0 deletions src/foundation/constant-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ open import foundation-core.constant-maps public

```agda
open import foundation.0-maps
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.faithful-maps
open import foundation.function-extensionality
Expand All @@ -23,6 +24,7 @@ open import foundation-core.embeddings
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.injective-maps
open import foundation-core.propositional-maps
Expand Down Expand Up @@ -160,3 +162,18 @@ const-injection :
pr1 (const-injection A B a) = const A B
pr2 (const-injection A B a) = is-injective-const A B a
```

### The action on identifications of the constant map is another constant map
tomdjong marked this conversation as resolved.
Show resolved Hide resolved

```agda
htpy-const-Id-ap-const-htpy-eq :
{l1 l2 : Level} (A : UU l1) {B : UU l2} (x y : B) →
htpy-eq ∘ ap (const A B) {x} {y} ~ const A (x = y)
htpy-const-Id-ap-const-htpy-eq A x y refl = refl

htpy-ap-const-htpy-eq-const-Id :
{l1 l2 : Level} (A : UU l1) {B : UU l2} (x y : B) →
const A (x = y) ~ htpy-eq ∘ ap (const A B) {x} {y}
htpy-ap-const-htpy-eq-const-Id A x y =
inv-htpy (htpy-const-Id-ap-const-htpy-eq A x y)
```
49 changes: 49 additions & 0 deletions src/synthetic-homotopy-theory/acyclic-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ module synthetic-homotopy-theory.acyclic-maps where
<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.constant-maps
open import foundation.contractible-maps
open import foundation.contractible-types
Expand All @@ -17,9 +18,11 @@ open import foundation.embeddings
open import foundation.epimorphisms
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-dependent-function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.precomposition-dependent-functions
open import foundation.precomposition-functions
open import foundation.propositions
Expand Down Expand Up @@ -151,6 +154,52 @@ module _
( e X)))
```

### A type is acyclic if and only if the constant map from any identity type is an equivalence

More precisely, `A` is acyclic if and only if for all types `X` and elements
`x,y : X`, the map

```text
const : (x = y) → (A → x = y)
```

is an equivalence.

```agda
module _
{l : Level} (A : UU l)
where

is-equiv-const-Id-is-acyclic :
is-acyclic A →
{l' : Level} {X : UU l'} (x y : X) → is-equiv (const A (x = y))
is-equiv-const-Id-is-acyclic ac {X = X} x y =
is-equiv-htpy
( htpy-eq ∘ ap (const A X) {x} {y})
( htpy-ap-const-htpy-eq-const-Id A x y)
( is-equiv-comp
( htpy-eq)
( ap (const A X))
( is-emb-const-is-acyclic A ac X x y)
( funext (const A X x) (const A X y)))

is-acyclic-is-equiv-const-Id :
({l' : Level} {X : UU l'} (x y : X) → is-equiv (const A (x = y))) →
is-acyclic A
is-acyclic-is-equiv-const-Id h =
is-acyclic-is-emb-const A
( λ X →
( λ x y →
is-equiv-right-factor
( htpy-eq)
( ap (const A X))
( funext (const A X x) (const A X y))
( is-equiv-htpy
( const A (x = y))
( htpy-const-Id-ap-const-htpy-eq A x y)
( h x y))))
```

### A map is acyclic if and only if it is an [dependent epimorphism](foundation.dependent-epimorphisms.md)

The following diagram is a helpful illustration in the second proof:
Expand Down
55 changes: 55 additions & 0 deletions src/synthetic-homotopy-theory/truncated-acyclic-maps.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ module synthetic-homotopy-theory.truncated-acyclic-maps where
<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.connected-maps
open import foundation.connected-types
open import foundation.constant-maps
Expand All @@ -17,9 +18,11 @@ open import foundation.embeddings
open import foundation.epimorphisms-with-respect-to-truncated-types
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-dependent-function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.precomposition-dependent-functions
open import foundation.precomposition-functions
open import foundation.propositions
Expand Down Expand Up @@ -159,6 +162,58 @@ module _
( e X)))
```

### A type is `k`-acyclic if and only if the constant map from any identity type of any `k`-type is an equivalence

More precisely, `A` is `k`-acyclic if and only if for all `k`-types `X` and
elements `x,y : X`, the map

```text
const : (x = y) → (A → x = y)
```

is an equivalence.

```agda
module _
{l : Level} {k : 𝕋} (A : UU l)
where

is-equiv-const-Id-is-acyclic-Truncated-Type :
is-truncated-acyclic k A →
{l' : Level} {X : Truncated-Type l' k} (x y : type-Truncated-Type X) →
is-equiv (const A (x = y))
is-equiv-const-Id-is-acyclic-Truncated-Type ac {X = X} x y =
is-equiv-htpy
( htpy-eq ∘ ap (const A (type-Truncated-Type X)) {x} {y})
( htpy-ap-const-htpy-eq-const-Id A x y)
( is-equiv-comp
( htpy-eq)
( ap (const A (type-Truncated-Type X)))
( is-emb-const-is-truncated-acyclic-Truncated-Type A ac X x y)
( funext
( const A (type-Truncated-Type X) x)
( const A (type-Truncated-Type X) y)))

is-truncated-acyclic-is-equiv-const-Id-Truncated-Type :
( {l' : Level} {X : Truncated-Type l' k} (x y : type-Truncated-Type X) →
is-equiv (const A (x = y))) →
is-truncated-acyclic k A
is-truncated-acyclic-is-equiv-const-Id-Truncated-Type h =
is-truncated-acyclic-is-emb-const-Truncated-Type A
( λ X →
( λ x y →
is-equiv-right-factor
( htpy-eq)
( ap (const A (type-Truncated-Type X)))
( funext
( const A (type-Truncated-Type X) x)
( const A (type-Truncated-Type X) y))
( is-equiv-htpy
( const A (x = y))
( htpy-const-Id-ap-const-htpy-eq A x y)
( h {X = X} x y))))
```

### A map is `k`-acyclic if and only if it is an [dependent `k`-epimorphism](foundation.dependent-epimorphisms-with-respect-to-truncated-types.md)

The proof is similar to that of dependent epimorphisms and
Expand Down