Performed Various Analysis Task as mentioned
DESCRIPTION
One of the leading retail stores in the US, Walmart, would like to predict the sales and demand accurately. There are certain events and holidays which impact sales on each day. There are sales data available for 45 stores of Walmart. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to the inappropriate machine learning algorithm. An ideal ML algorithm will predict demand at different points of time covering seasonality and ingest factors like economic conditions including CPI, Unemployment Index, etc.
Walmart runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of all, which are the Super Bowl, Labour Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modeling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data. Historical sales data for 45 Walmart stores located in different regions are available.
Dataset Description This is the historical data which covers sales from 2010-02-05 to 2012-11-01, in the file Walmart_Store_sales. Within this file you will find the following fields:
Store - the store number Date - the week of sales Weekly_Sales - sales for the given store Holiday_Flag - whether the week is a special holiday week 1 – Holiday week 0 – Non-holiday week Temperature - Temperature on the day of sale Fuel_Price - Cost of fuel in the region CPI – Prevailing consumer price index Unemployment - Prevailing unemployment rate Holiday Events Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13 Labour Day: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13 Thanksgiving: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13 Christmas: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13
Basic Statistics tasks
Which store has maximum sales Which store has maximum standard deviation i.e., the sales vary a lot. Also, find out the coefficient of mean to standard deviation Which store/s has good quarterly growth rate in Q3’2012 Some holidays have a negative impact on sales. Find out holidays which have higher sales than the mean sales in non-holiday season for all stores together Provide a monthly and semester view of sales in units and give insights Statistical Model For Store 1 – Build prediction models to forecast demand
Linear Regression – Utilize variables like date and restructure dates as 1 for 5 Feb 2010(starting from the earliest date in order). Hypothesize if CPI, unemployment, and fuel price have any impact on sales. Time series forecasting model – Hypothesize if the data is fit for time series analysis – check for white noise probability test Make adjustments in historical data for events like holidays, if applicable Build ARIMA model to forecast 6 months i.e., input utilize only till April 2012. Predict next 6 months i.e., June to Oct 2010. Check for MAPE.
Select the model which gives best accuracy.