pyggester - (python + suggester) functions as both a dynamic and static analyzer. Its primary purpose lies in offering suggestions to enhance the efficiency of Python code by addressing suboptimal usage of data structures.
Pyggester offers a pretty decent cli interface for its functionalities. The cli is built on top of typer
Execution command
:
pyggest
output
:
_____
_____________ ________ _______ ______________ /_____________
___ __ \_ / / /_ __ `/_ __ `/ _ \_ ___/ __/ _ \_ ___/
__ /_/ / /_/ /_ /_/ /_ /_/ // __/(__ )/ /_ / __/ /
_ .___/_\__, / _\__, / _\__, / \___//____/ \__/ \___//_/
/_/ /____/ /____/ /____/
Usage: pyggest [OPTIONS] COMMAND [ARGS]...
โญโ Options โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ --install-completion Install completion for the current shell. โ
โ --show-completion Show completion for the current shell, to copy it or customize the installation. โ
โ --help Show this message and exit. โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โญโ Commands โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ static Perform static analysis using PyggestStatic. โ
โ transform Perform dynamic transformation using PyggesterDynamic. โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
The pyggester CLI presents two distinct features:
-
Static Analysis: This feature comprehensively examines your code without executing it, providing insightful insights into its structure and potential improvements.
Execution command
[!NOTE] The 'static' subcommand exists, but has no functionalities implemented, because we already have good static analyzers(pylint, ruff, flake8). In future iterations, should we identify suggestions that can be established through static analysis, we will incorporate them into this feature.
pyggest static
-
Dynamic/Automatic Transformation: This feature adds extra code to your python files to analyze your data structures at runtime. Your original code stays the same; it won't be changed. A new file is created that's just like the original but with additional code. This works for both single files and whole directories(full project structures).
Execution command
pyggest transform
[!INFO] pyggester offers built-in documentation for detailed usage
pyggest transform --help
pyggest static --help #NOT IMPLEMENTED
You can easily install the Python library using pip. Open your terminal and run the following command:
pip install pyggester
-
Clone the Repository: Open your terminal and run the following command to clone the GitHub repository to your local machine:
git clone [email protected]:ValdonVitija/pyggester.git
-
Navigate to the Repository: Change your working directory to the cloned repository:
cd pyggester
-
Install pyggester as a pacakge locally:
[!IMPORTANT] Consider doing this within a virtual environment (venv) if possible.
pip install .
Lets suppose you have a single python file that you want to dynamically analyze(run-time analysis)
Before code transformation with pyggester:
(venv) root@user:~/my_app> ls
app.py
Content of app.py:
def sum_of_integers(integer_list):
total = sum(integer_list)
return total
my_list = [1, 2, 3, 4, 5]
print(sum_of_integers(my_list))
Important
Make sure you're in a virtual environment with pyggester installed before going to the next step.
(venv) root@devs04:~/my_app> pyggest transform app.py
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ File transformed successfully! โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
(venv) root@devs04:~/my_app> ls
app.py app_transformed.py
Content of app_transformed.py:
from pyggester.observable_collector import OBSERVABLE_COLLECTOR
from pyggester.observables import ObservableNumpyArray, ObservableNamedTuple, ObservableSet, ObservablePandasDataFrame, ObservableList, ObservableDict, ObservableTuple
def sum_of_integers(integer_list):
total = sum(integer_list)
return total
my_list = ObservableList([1, 2, 3, 4, 5])
OBSERVABLE_COLLECTOR.append(my_list)
print(sum_of_integers(my_list))
for observable in OBSERVABLE_COLLECTOR:
observable.run()
Important
We now have a new file, automatically created, that mirrors the original file. This new file includes all the contents of the original, plus extra code for analyzing your code during runtime. Instead of running the original 'app.py', you should now run 'app_transformed.py'. Rest assured, everything from 'app.py' is retained in 'app_transformed.py'.
(venv) root@devs04:~/my_app> python3 app_transformed.py
15
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ 10 | Suggestions(/root/my_app/app_transformed.py): โ
โ [*] Consider using an array.array instead of a list, for optimal โ
โ memory consumption โ
โ [*] Consider using a set instead of a list, because of unique elements โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
Lets suppose you have a python project(directory/repo) that you want to dynamically analyze(run-time analysis)
Before code transformation with pyggester:
(venv) root@devs04:~/python_demo/app_dir> ls
__pycache__ app.py temperature.py weather.py
Content of app.py:
import weather
import temperature
def main():
city = input('Enter a city name: ')
weather_condition = weather.get_weather(city)
avg_temp = temperature.get_average_temperature()
print(f'Weather in {city}: {weather_condition}')
print(f'Average temperature: {avg_temp} degrees Celsius')
main()
Content of temperature.py:
temperatures = list([20, 22, 15, 18, 20, 21, 22, 22, 18, 17, 20])
def get_average_temperature():
return sum(temperatures) / len(temperatures)
Content of weather.py:
weather_conditions = ['Sunny', 'Rainy', 'Cloudy', 'Windy', 'Sunny', 'Cloudy']
def get_weather(city):
return weather_conditions.pop()
Important
Make sure you're in a virtual environment with pyggester installed before going to the next step.
(venv) root@devs04:~/python_demo> pyggest transform app_dir/
Enter the name of the main file: app.py
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ Directory transformed successfully! โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
Important
When a directory or project is specified as an argument, pyggester prompts us to specify the main file of our project. This file should be the entry point of your project, indicated by its file name.
(venv) root@devs04:~/python_demo> ls
app_dir app_dir_transformed
Content of app_dir_transformed/:
(venv) root@devs04:~/python_demo/app_dir_transformed> ls
app.py temperature.py weather.py
Content of app.py:
from pyggester.observable_collector import OBSERVABLE_COLLECTOR
from pyggester.observables import ObservableNumpyArray, ObservableList, ObservablePandasDataFrame, ObservableNamedTuple, ObservableSet, ObservableDict, ObservableTuple
import weather
import temperature
def main():
city = input('Enter a city name: ')
weather_condition = weather.get_weather(city)
avg_temp = temperature.get_average_temperature()
print(f'Weather in {city}: {weather_condition}')
print(f'Average temperature: {avg_temp} degrees Celsius')
main()
for observable in OBSERVABLE_COLLECTOR:
observable.run()
Content of temperature.py:
from pyggester.observable_collector import OBSERVABLE_COLLECTOR
from pyggester.observables import ObservableNumpyArray, ObservableList, ObservablePandasDataFrame, ObservableNamedTuple, ObservableSet, ObservableDict, ObservableTuple
temperatures = ObservableList(list([20, 22, 15, 18, 20, 21, 22, 22, 18, 17,
20]))
OBSERVABLE_COLLECTOR.append(temperatures)
def get_average_temperature():
return sum(temperatures) / len(temperatures)
Content of weather.py:
from pyggester.observable_collector import OBSERVABLE_COLLECTOR
from pyggester.observables import ObservableNumpyArray, ObservableList, ObservablePandasDataFrame, ObservableNamedTuple, ObservableSet, ObservableDict, ObservableTuple
weather_conditions = ObservableList(['Sunny', 'Rainy', 'Cloudy', 'Windy',
'Sunny', 'Cloudy'])
OBSERVABLE_COLLECTOR.append(weather_conditions)
def get_weather(city):
return weather_conditions.pop()
Important
We now have a new directory, automatically created, that mirrors the original directory. This new directory includes all the contents of the original, plus extra code for analyzing your code during runtime. Instead of running the original 'app.py', you should now run 'app.py' that resides inside 'app_dir_transformed/'. Rest assured, everything from 'app_dir' is retained in 'app_dir_transformed/'.
(venv) root@devs04:~/python_demo/app_dir_transformed> python3 app.py
Enter a city name: Pristina
Weather in Pristina: Cloudy
Average temperature: 19.545454545454547 degrees Celsius
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ 3 | Suggestions(/root/python_demo/app_dir_transformed/temperature.py): โ
โ [*] Consider using an array.array instead of a list, for optimal memory โ
โ consumption โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
.
โโโ LICENSE
โโโ README.md #main readme file. The one you are currently reading.
โโโ VERSION #version of pyggester
โโโ contributing.md
โโโ pyggester # directory containing the full source code of pyggester
โย ย โโโ __init__.py
โย ย โโโ cli.py #defines the typer cli structure(command & options)
โย ย โโโ command_handlers.py #Handles subcommands and every option variation per subcommand.
โย ย โโโ data #data/config files related to pyggester.
โย ย โย ย โโโ help_files #build in help files for the pyggester cli
โย ย โย ย โโโ __init__.py
โย ย โย ย โโโ transform_helper.md #detailed built-in documentation for the transform subcommand of pyggest
โย ย โย ย โโโ static_helper.md #detailed built-in documentation for the static subcommand of pyggest
โย ย โโโ helpers.py #helper functions to be used by other modules
โย ย โโโ main.py #The entry point of pyggest execution. Initializes the typer cli app and prints the ascii logo of pyggester
โย ย โโโ message_handler.py #Manages how the collected messages will be printed to the user.
โย ย โโโ module_importer.py #Contains the mechanism to automatically import observables
โย ย โโโ observable_collector.py #Contains the list that will be used to collect all observables.
โย ย โโโ observable_transformations.py #Contains the mechanism that will automatically add code that collects observables and glues together all ast modules
โย ย โโโ observables.py #Contains all the defined observables(enhanced version of python collections)
โย ย โโโ pyggester.py #The 'engine' of pyggester. This module glues everything together
โย ย โโโ text_formatters.py #Contains text formatters, to beautify text in stdout.
โย ย โโโ wrappers.py #Contains the mechanism that wrap each observable.
โโโ pyggester_abstract_execution_flow.png
โโโ pyggester_logo.png
โโโ pytest.ini #pytest config file
โโโ requirements.txt #Every pyggester dependecy resides here
โโโ setup.py #Creates the pyggester pacakge and defines pyggest as the entry point command to execute pyggester
โโโ tests
โโโ __init__.py
โโโ test_cli.py
โโโ test_command_handlers.py
โโโ test_file.py
โโโ test_file_transformed.py
โโโ test_helpers.py
โโโ test_main.py
โโโ test_message_handler.py
โโโ test_module_importer.py
โโโ test_observable_transformations.py
โโโ test_observables.py
โโโ test_pyggester.py
โโโ test_wrappers.py
The following flow diagram illustrates key components of Pyggester and provides a comprehensive overview of the execution sequence.
To contribute to this project, please refer to the comprehensive contribution guide for detailed instructions and best practices.
MIT License
Copyright (c) 2023 ValdonVitijaa
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.